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1.1 problem 1.1-2 (a)

1.1.1 Solving as quadratureode . . . . . .. ... ... ... .....
1.1.2 Maple step by step solution . . . . ... ... ... ....... izl

Internal problem ID [2447]
Internal file name [OUTPUT/1939_Sunday_June_05_2022_02_40_08_AM_92199210/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

yI:t2+3

1.1.1 Solving as quadrature ode

Integrating both sides gives

y=/t2+3dt

1
=§sz"’+‘3>1&+(:1

Summary
The solution(s) found are the following

1
y=§t3—|—3t+cl (1)
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Figure 1: Slope field plot
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Highest derivative means the order of the ODE is 1

1

3

Integrate both sides with respect to ¢

Evaluate integral

Let’s solve
Solve for y

[y'dt

y/
Y

1.1.2 Maple step by step solution
[ J

Verification of solutions

Verified OK.



y=3t*+3t+c

Maple trace

-

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘trying a quadrature

L<— quadrature successful”

-~ @@

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(t),t)=t‘2+3,y(t), singsol=all)

1
y(t) = §t3 +3t+c

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 18

LDSolve [y' [t]==t~2+3,y[t],t,IncludeSingularSolutions -> Truel

3

t



1.2 problem 1.1-2 (b)

1.2.1 Solving as quadratureode . . . . . .. ... ... ... ... 6
1.2.2 Maple step by step solution . . . . ... ... ... ....... [

Internal problem ID [2448]
Internal file name [OUTPUT/1940_Sunday_June_05_2022_02_40_11_AM_83674871/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y=e

1.2.1 Solving as quadrature ode

Y= /e%t dt

2t — 1) et

4

Integrating both sides gives

Summary
The solution(s) found are the following
(2t —1)e*

Z/=T+Cl (1)
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Figure 2: Slope field plot

Verification of solutions

(2t —1)e*
y="——"—+a

Verified OK.

1.2.2 Maple step by step solution

Let’s solve
yl — e2tt

° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to ¢

[y'dt = [e*tdt + ¢

° Evaluate integral
y=00" 4
° Solve for y



2t 2t
e“'t [S]
y ____|_cl

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(diff(y(t),t)=t*exp(2*t),y(t), singsol=all)

(2t —1)e*

y(t) = —  ta

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22

LDSolve[y'[t]==t*Exp[2*t],y[t],t,IncludeSingularSolutions -> True]

1
y(t) — Zth(2t -1 +a



1.3 problem 1.1-2 (c)

1.3.1 Solving as quadratureode . . . . . . ... ... ... ... ... )
1.3.2 Maple step by step solution . . . . . ... ... ... ... ... 10}

Internal problem ID [2449]
Internal file name [OUTPUT/1941_Sunday_June_05_2022_02_40_12_AM_45605752/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y' = sin (3t)

1.3.1 Solving as quadrature ode

Integrating both sides gives

y= /sin (3t) dt
t
__cos ;3 ) o
Summary
The solution(s) found are the following

Y= _cos:)f3t) Loy (1)
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Figure 3: Slope field plot

Verification of solutions

cos (3t
Yy=- (3%) 1

3

Verified OK.

1.3.2 Maple step by step solution

Let’s solve
y' = sin (3t)
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to ¢

[y'dt = [sin(3t)dt + ¢

° Evaluate integral
y = _cos?E3t) +e
° Solve for y

10



y = _cos§3t) + c1

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
L<— quadrature successful’

-~ @@

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff (y(t),t)=sin(3*t),y(t), singsol=all)

y(t) = _cos?f?)t) e

v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 16

tDSolve[y'[t]==Sin[3*t],y[t],t,IncludeSingularSolutions -> True]

1
y(t) — —3 cos(3t) + ¢

11



1.4 problem 1.1-2 (d)

1.4.1 Solving as quadratureode . . . . . .. ... ... ... ..., 12]
1.4.2 Maple step by step solution . . . . ... ... ... ....... 13|

Internal problem ID [2450]
Internal file name [OUTPUT/1942_Sunday_June_05_2022_02_40_14_AM_83224243/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y' = sin (t)°

1.4.1 Solving as quadrature ode

Integrating both sides gives

y = / sin (¢)* dt
_sin(t)cos(t) ¢

=5 T3ta

Summary
The solution(s) found are the following

) = _sin (t)2cos (?) + % ter (1)

12
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Figure 4: Slope field plot

Verification of solutions

sin (t) cos (t) 4 t te
- a a 1

y=- 2 2

Verified OK.

1.4.2 Maple step by step solution

Let’s solve
y = sin (t)?
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to ¢

[y'dt = [sin(t)*dt +c;
° Evaluate integral
Y= _Si“(t)+s(t) + % +e

° Solve for y

13



y = _sin(t)2cos(t) + % e

Maple trace

-

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
L<— quadrature successful’

-~ @@

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

Ldsolve(diff (y(t),t)=sin(t)"2,y(t), singsol=all)

t sin (2t
y(t):§+01— i )

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 21

tDSolve[y'[t]==Sin[t]‘2,y[t],t,IncludeSingularSolutions -> True]

t 1
y(t) — 272 sin(2t) + ¢

14



1.5 problem 1.1-2 (e)

1.5.1 Solving as quadratureode . . . . . .. ... .. ... ... ...
1.5.2 Maple step by step solution . . . . ... ... ... ... ... .

Internal problem ID [2451]

Internal file name [OUTPUT/1943_Sunday_June_05_2022_02_40_15_AM_39058871/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature'

Maple gives the following as the ode type

[_quadrature]

1.5.1 Solving as quadrature ode

Integrating both sides gives

t
y_/t2—|-4 di
_ In(#*+4)

B 2

(4]
Summary
The solution(s) found are the following

In (8?2 +4)
y=—yp ta

15
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Figure 5: Slope field plot

Verification of solutions

In(t?+4
y=¥+cl

Verified OK.

1.5.2 Maple step by step solution

Let’s solve
Pt
Y=%9%xa

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to ¢
[y'dt = [ gtydt+c
° Evaluate integral

° Solve for y

16



n(t2

Maple trace

"Methods for first order ODEs:

‘--- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

tdsolve(diff(y(t),t)=t/(t‘2+4),y(t), singsol=all)

In (2 + 4)

y(t) = —

+c

v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 18

LDSolve[y‘[t]==t/(t“2+4),y[t],t,IncludeSingularSolutions -> Truel

1
Mﬂ%ibﬂﬁ+ﬁ+q

17



1.6 problem 1.1-2 (f)

1.6.1 Solving as quadratureode . . . . . ... ... ... ... ... 18]
1.6.2 Maple step by step solution . . . . . ... ... ... ... ... 19|

Internal problem ID [2452]
Internal file name [OUTPUT/1944_Sunday_June_05_2022_02_40_17_AM_22616209/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (f).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

1.6.1 Solving as quadrature ode

Integrating both sides gives
y= / In (¢) dt
=tln(t)—t+c

Summary
The solution(s) found are the following

y=tln(t)—t+c (1)

18
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Figure 6: Slope field plot

Verification of solutions

y=tln(t)—t+c

Verified OK.

1.6.2 Maple step by step solution

Let’s solve

Y =n(t)

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to ¢

[y'dt = [In(t)dt+ 1

° Evaluate integral
y=tln(t)—t+c
° Solve for y

y=tln(t)—t+c

19




Maple trace

“Methods for first order ODEs:
‘——— Trying classification methods ---

‘trying a quadrature
‘<— quadrature successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(diff (y(t),t)=1n(t),y(t), singsol=all)

y(t)=tln(t) —t+c

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 15

LDSolve[y'[t]==Log[t],y[t],t,IncludeSingularSolutions -> True]

y(t) = —t+tlog(t) + a1

20



1.7 problem 1.1-2 (g)
1.7.1 Solving as quadratureode . . . . . .. ... ... ... ..., 21]

1.7.2 Maple step by step solution . . . . .. ... ... ... ... .. 22]

Internal problem ID [2453]
Internal file name [OUTPUT/1945_Sunday_June_05_2022_02_40_20_AM_75628296/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-2, page 6

Problem number: 1.1-2 (g).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature'

Maple gives the following as the ode type

[_quadrature]

; t
RV N
1.7.1 Solving as quadrature ode
Integrating both sides gives
t
= dt
Y / Vi+1
ot
=S —tr2vi-2m (Vitl) +a
3
Summary
The solution(s) found are the following
2t3
yz?—t+2\/i—2ln<\/i+1>+c1 (1)

21



3 —— 7T
—— 7]
—— 77/
- =T
— 77777/
—— 7]
— 77T
— 77777/
y(t) 07 — 7777/
— 77777/
—— 7]
— 14 — 7777/
—— 7]
— 77777/
—2 — 77777/
— 777/
— 777
-3 —— 7] ]

-3 -2 -1 0 1 2 3

Figure 7: Slope field plot

Verification of solutions

23
y=?2—t+2\/1_5—21n<\/£+1>+01

Verified OK.

1.7.2 Maple step by step solution

Let’s solve

!/ __ t
¥ ="

. Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to ¢

fy’dtzf\/itﬂdt—l-cl

° Evaluate integral
3
Y= 2th—t—|—2\/1_5—21n(\/f-|—1) +c
° Solve for y

22



3
y=2% —t+2vt—2In(Vi+1)+a

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---
‘tryiug a quadrature

‘<— quadrature successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

‘dsolve(diff(y(t),t)=t/(sqrt(t)+1),y(t), singsol=all)

2t

v/ Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 25

LDSolve[y'[t]==1/(1+Sqrt[t]),y[t],t,IncludeSingularSolutions -> Truel

y(t) = 2Vt — 2log (\/%+ 1) + ¢

23



2.1
2.2
2.3
24
2.5
2.6

Problem 1.1-3, page 6

problem 1.1-3 (&) . . . . . . . ... 251
problem 1.1-3 (b) . . . . . ... 29
problem 1.1-3 (¢) . . . . . . .. B34
problem 1.1-3 (d) . . . . . . .. . 47
problem 1.1-3 (€) . . . . . . . . .. b1l
problem 1.1-3 (f) . . . . . . . ... k%)

24



2.1 problem 1.1-3 (a)

2.1.1 Existence and uniqueness analysis. . . . . . ... ... ... ..
2.1.2 Solving as quadratureode . . . . . ... ... ... ...
2.1.3 Maple step by step solution . . . . ... ... ...

Internal problem ID [2454]

Internal file name [OUTPUT/1946_Sunday_June_05_2022_02_40_22_AM_70399770/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-3, page 6

Problem number: 1.1-3 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

2.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
p(t) = =2
q(t) = —4
Hence the ode is
y —2y=—4

25



The domain of p(t) = —2 is
{—00 <t < o0}

And the point ¢y = 0 is inside this domain. The domain of ¢(t) = —4 is
{—00 <t < o0}
And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

2.1.2 Solving as quadrature ode

1
/2y_4dy—/dt

In(y —2
-2,

Integrating both sides gives

Raising both side to exponential gives

VTR
Which simplifies to
VY — 2 = cpe

Initial conditions are used to solve for cy. Substituting ¢t = 0 and y = 5 in the above
solution gives an equation to solve for the constant of integration.

5=c§+2

co=—v3
Substituting c, found above in the general solution gives
y=3e*42

Summary
The solution(s) found are the following

y=3e*+2 (1)

26
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(a) Solution plot (b) Slope field plot
Verification of solutions
y=3e*4+2

Verified OK.

2.1.3 Maple step by step solution

Let’s solve

[y — 2y = —4,y(0) = 5]
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
=1

. Integrate both sides with respect to ¢
[ 35dt = [1dt+c

° Evaluate integral
w =t+c

° Solve for y

Y= e?t+2c1 + 2

27



) Use initial condition y(0) =5

5=e%t 42
° Solve for ¢;
o = B
° Substitute ¢c; = @ into general solution and simplify
y=3e’ +2
° Solution to the IVP
y=3e*+2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

‘dsolve([diff(y(t),t)=2*y(t)-4,y(0) = 5],y(t), singsol=all)

y(t) =2+ 3e*

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 14

LDSolve[{y'[t]==2*y[t]—4,y[0]==5},y[t],t,IncludeSingularSolutions -> Truel

y(t) — 3e* + 2

28



2.2 problem 1.1-3 (b)

2.2.1 Existence and uniqueness analysis. . . . . .. .. ... ... .. 29]
2.2.2 Solving as quadratureode . . . . . ... ... ... 301
2.2.3 Maple step by step solution . . . . . ... ... 31

Internal problem ID [2455]
Internal file name [OUTPUT/1947_Sunday_June_05_2022_02_40_25_AM_30918361/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-3, page 6

Problem number: 1.1-3 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

2.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

Y = f(t,y)
3

=—y
The y domain of f(¢,y) when ¢t =1 is
{—o00 <y < oo}

And the point yo = 3 is inside this domain. Now we will look at the continuity of

of _ 0, 3
oy~ oy V)
=—3y2

29



The y domain of g—f when t =1 is
)
{—o00 <y < oo}
And the point y, = 3 is inside this domain. Therefore solution exists and is unique.

2.2.2 Solving as quadrature ode

Integrating both sides gives

1
/—Edy=t+cl

1
AR

Solving for y gives these solutions

1

= et o
1

2= _\/2t+261

Initial conditions are used to solve for c¢;. Substituting ¢t = 1 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

1
\/2 + 2C1

Warning: Unable to solve for ¢;. No particular solution can be found using given initial
conditions for this solution. removing this solution as not valid. Initial conditions are

used to solve for ¢;. Substituting ¢ = 1 and y = 3 in the above solution gives an equation
to solve for the constant of integration.

1
\/2 -I- 201

o = 17
BT
Substituting c¢; found above in the general solution gives
3

N T T

30



Summary
The solution(s) found are the following

3
Y= (1)
V18t — 17
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(a) Solution plot (b) Slope field plot
Verification of solutions
_ 3
Y= /ist—17

Verified OK.

2.2.3 Maple step by step solution

Let’s solve
[y +y*>=0,y(1) =3
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables

° Integrate both sides with respect to ¢
[&dt= [ (-1)dt+c
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Maple trace

Evaluate integral

—ﬁ =—t+ C1
Solve for y

_ 1 _ 1
{y = Vet Y T —m}
Use initial condition y(1) = 3

-1
3= v—2c1+2
Solve for ¢;

Y
€= 13

Substitute ¢c; = % into general solution and simplify

___3
Y= Tse=tr
Use initial condition y(1) =3
3=——-1

T V2a+2

Solution does not satisfy initial condition

Solution to the IVP

- 3
Y= Jse=17

"Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 13

Ldsolve([diff(y(t),t)=-y(t)*3,y(1) = 3],y(t), singsol=all)

£ — 3

v/ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 16

LDSolve[{y'[t]==-y[t]”3,y[1]==3},y[t],t,IncludeSingularSolutions -> Truel

33



2.3 problem 1.1-3 (c)

2.3.1 Existence and uniqueness analysis. . . . . ... ... ... ... 34
2.3.2 Solving as separableode . . . . . ... ... L. 351
2.3.3 Solving as first order ode lie symmetry lookup ode . . .. ... B7
2.3.4 Solvingasexactode . . ... ... ... ... ... ...... 421
2.3.5 Maple step by step solution . . . . . ... ... 45}

Internal problem ID [2456]
Internal file name [OUTPUT/1948_Sunday_June_05_2022_02_40_29_AM_86989023/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-3, page 6

Problem number: 1.1-3 (c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

#—§=0
Yy
With initial conditions
[y(In (2)) = —§]

2.3.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as

v =f(ty)
et

Ty
The t domain of f(¢,y) when y = —8 is

{—00 <t < o0}
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And the point ¢y = In (2) is inside this domain. The y domain of f(¢,y) when ¢ = In (2)
is

{y<0ovo<y}
And the point yy = —8 is inside this domain. Now we will look at the continuity of
of _ 9 (e_t)
9y Oy\y
et
Ty
The t domain of g—f when y = —8 is
Y

{—o0 <t < o0}
And the point t; = In (2) is inside this domain. The y domain of g—i when t =In (2) is
{y<0Vvo<y}

And the point yy = —8 is inside this domain. Therefore solution exists and is unique.

2.3.2 Solving as separable ode

In canonical form the ODE is

y/ = F(t’ y)
= f(t)g(y)

e

Y

Where f(t) = e’ and g(y) = i Integrating both sides gives

1
Idy:etdt
y
1
/Idy=/etdt
y
2
%=et+61
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Which results in

y=+2e+2¢
y=—v2e+2¢

Initial conditions are used to solve for ¢;. Substituting ¢ = In (2) and y = —8 in the
above solution gives an equation to solve for the constant of integration.

—8=—I+2¢

Cc1 = 30
Substituting ¢; found above in the general solution gives

y=—v2et 460

Initial conditions are used to solve for ¢;. Substituting ¢ = In (2) and y = —8 in the
above solution gives an equation to solve for the constant of integration.

—8: \/4+2Cl

Summary
The solution(s) found are the following

y=—v2e 460

Warning: Unable to solve for constant of integration.

e Y Y DU s N N N N N e N S T R ¥
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NNV NV
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—95 \\Etkk
y(l) 1 NN LD
NONNN
NNV
los NNV W
NNV
. NRARARN
NV

NN
—11.51 NANNNN
NN

0 05 1 15 2 25 3 35 0 1 2 3
; t
(a) Solution plot (b) Slope field plot
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Verification of solutions

y=—v2e4+60
Verified OK.

2.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

(¢]
~

!/

y:

€ w

y/ = (ta y)

The condition of Lie symmetry is the linearized PDE given by
N + W(ny — &) — w2§y —w—wyn=0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

E(t,y) =e™"

n(t,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1

5= [ g
§
1

S =¢et

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS Sy +w(t,y)S,

et 2
dR R;+w(t,y)R, @)

Where in the above R:, Ry, St, S, are all partial derivatives and w(t, y) is the right hand
side of the original ode given by

t

e
w(t,y) = 5

Evaluating all the partial derivatives gives

R,=0
R,=1
S, =¢et
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS
E% =Y (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
E_R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

sy =2 ve, (@)
To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in
. 2
e:§+q
Which simplifies to
. 2
e=§+q

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

Original ode in t,y coordinates coordinates (R, S)

transformation

ODE in canonical coordinates
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Initial conditions are used to solve for ¢;. Substituting ¢ = In (2) and y = —8 in the
above solution gives an equation to solve for the constant of integration.

2=32+4¢

Cci = —-30
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Substituting c¢; found above in the general solution gives

2
t Y
=< _30
©79

Solving for y from the above gives

y=—v2e+60

Summary
The solution(s) found are the following

y=—v2e' +60 1)
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e e — —
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t t

(a) Solution plot (b) Slope field plot

Verification of solutions

y=—v2et 4+ 60

Verified OK.
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2.3.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

(y)dy = (¢') dt
(—€) dt+(y)dy =0 (24)

Comparing (1A) and (2A) shows that

M(tay) = _et
N(tay) =Y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

Using result found above gives

And

; oM _ ON
Since 2 = o)

for the function ¢(t,y)

Integrating (1) w.r.t. ¢ gives

oM _ oN
oy Ot

oM _ 9, ,
ay "oy
=0

QN_EQ)
o otV
—0

then the ODE is exact The following equations are now set up to solve

o6
o =M @
0p

o6 .
Edt—/Mdt
9¢ ¢

¢ =—¢"+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.

Taking derivative of equation (3) w.r.t y gives

But equation (2) says that a—Z’ = y. Therefore equation (4) becomes

]

9¢ :
3y =0+ 1'(y) (4)

y=0+f(y) (5)
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Solving equation (5) for f'(y) gives
f'y) =y

Integrating the above w.r.t y gives

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2

¢:—et+%+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

2

¢ =—€+ %
Initial conditions are used to solve for ¢;. Substituting ¢ = In (2) and y = —8 in the

above solution gives an equation to solve for the constant of integration.

30201

01:30

Substituting c¢; found above in the general solution gives

Solving for y from the above gives

y=—v2e 460

Summary
The solution(s) found are the following

y = —\ZE 60 1)
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(a) Solution plot

Verification of solutions

Verified OK.

2.3.5

y=—v2e+60

Maple step by step solution

Let’s solve

v — 2 =0,y(n(2))

-8

H —————
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t

(b) Slope field plot

Highest derivative means the order of the ODE is 1

!/

Y

Separate variables

yy =¢

Integrate both sides with respect to ¢

[yydt = [eldt+
Evaluate integral

¥

— At
2—e+01

Solve for y

{y=v2e +2c1,y = —v2€ 4+ 2¢, }
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o Use initial condition y(In (2)) = —8
—8=1/4+2c

° Solution does not satisfy initial condition

o Use initial condition y(In (2)) = —8

—8=—v4+2¢

° Solve for ¢;
C = 30
° Substitute c; = 30 into general solution and simplify

y=—v2e+60

° Solution to the IVP

y=—v2et+60

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 14

‘dsolve([diff(y(t),t)=exp(t)/y(t),y(1n(2)) = -8],y(t), singsol=all)

y(t) = —v2et + 60

v/ Solution by Mathematica
Time used: 0.594 (sec). Leaf size: 21

tDSolve[{y'[t]==Exp[t]/y[t],y[Log[2] ==-8},y[t],t,IncludeSingularSolutions -> True]

y(t) = —v2Vet +30
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2.4 problem 1.1-3 (d)

2.4.1 Existence and uniqueness analysis. . . . . .. .. ... ... ..
2.4.2 Solving as quadratureode . . . . . . ... ...
2.4.3 Maple step by step solution . . . . . ... ..o

Internal problem ID [2457]

Internal file name [OUTPUT/1949_Sunday_June_05_2022_02_40_31_AM_54207246/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-3, page 6

Problem number: 1.1-3 (d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

2.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
p(t)=0
q(t) = €™t
Hence the ode is
yl — tht
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The domain of p(t) = 0 is
{—00 <t < o0}

And the point t, = 1 is inside this domain. The domain of ¢(t) = €%t is

{—o0 <t < o0}

And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

2.4.2 Solving as quadrature ode

y= /e2tt dt

2t —1)e*
_@t=het

4

Integrating both sides gives

Initial conditions are used to solve for c¢;. Substituting ¢t = 1 and y = 5 in the above
solution gives an equation to solve for the constant of integration.
o2

5224—01

e2

61:—14‘5

Substituting ¢; found above in the general solution gives

o2 g2t o2
y= Tty
Summary
The solution(s) found are the following
o2tp o2t o2
=5 "5 - 1
y=— -7 +t5-7 1)
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(a) Solution plot (b) Slope field plot
Verification of solutions

B Q2 o2 s 2
Y= 7 4

Verified OK.

2.4.3 Maple step by step solution

Let’s solve

[y = e*t,y(1) = 5]
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to ¢

[y'dt = [e*tdt + ¢

° Evaluate integral
e e
° Solve for y
e2tt e2t

y=% -7 ta
o Use initial condition y(1) =5
o= % +c
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° Solve for ¢;

C1 = —% +5
° Substitute ¢; = —% + 5 into general solution and simplify
y=0P" 2 45

° Solution to the IVP

_ (2t—1)e* 2
y="EP g4

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---

‘trying a quadrature ‘
‘<- quadrature successful’

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 21

Ldsolve([diff(y(t),t)=t*exp(2*t),y(1) = 5],y(t), singsol=all) J
_(2t-1)e* e’

v/ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 27

LDSolve[{y'[t]==t*Exp[2*t],y[1]==5},y[t],t,IncludeSingularSolutions -> Truel J

y(t) — i(e2t(2t —1) —€* +20)
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2.5 problem 1.1-3 (e)

2.5.1 Existence and uniqueness analysis. . . . . ... ... ... ...
2.5.2 Solving as quadratureode . . . . . ... ... ...
2.5.3 Maple step by step solution . . . .. ... ... ... .. ....

Internal problem ID [2458]

Internal file name [OUTPUT/1950_Sunday_June_05_2022_02_40_34_AM_63720430/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-3, page 6

Problem number: 1.1-3 (e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y' = sin (t)

With initial conditions
u(5) =3

2.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here

Hence the ode is
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The domain of p(t) = 0 is
{—00 <t < o0}

And the point ty = % is inside this domain. The domain of ¢(t) = sin (t)? is
{—o0 <t < o0}

And the point £, = % is also inside this domain. Hence solution exists and is unique.

2.5.2 Solving as quadrature ode

Integrating both sides gives

y=/}m@fdt

_ sin(t)cos(t)  t
= 9 + 9 +c

Initial conditions are used to solve for c¢;. Substituting ¢ = § and y = 3 in the above
solution gives an equation to solve for the constant of integration.

V3 oom
=g tpta

V3 ow
a=g g ts

Substituting ¢; found above in the general solution gives

_sin(2)  t V3 7w
y=-—"3 Tatg ppt3

Summary
The solution(s) found are the following

sin(2t) t 3 7«
4 2+ 8 12+3 (1)
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(a) Solution plot

Verification of solutions

Verified OK.

2.5.3 Maple step by step solution

Let’s solve
[y = sin (t)? ,y(%) = 3]
° Highest derivative means the order of the ODE is 1

/

y
° Integrate both sides with respect to ¢

[y'dt = [sin(t)>dt + ¢,
° Evaluate integral

y = _sin(t)2cos(t) +ite
° Solve for y

y = _sin(t)2cos(t) +ite

) Use initial condition y(%) =3
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3:_T3+%+Cl
° Solve for ¢;
Cl=?3—%+3

° Substitute c; = ‘/?5 — {5 + 3 into general solution and simplify

y=-20) 1 14 B 743
° Solution to the IVP
ym s

Maple trace

“Methods for first order ODEs:

‘--- Trying classification methods ---
‘trying a quadrature

‘<— quadrature successful’

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 23

Ldsolve([diff(y(t),t)=sin(t)"2,y(1/6*Pi) = 3],y(t), singsol=all) J

t 7 /3 sin (2t)
) =g+t
v/ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 31

LDSolve[{y'[t]==Sin[t]‘2,y[Pi/6]==3},y[t],t,IncludeSingularSolutions -> Truel J

y(t) — i (3 <4t +V3+ 24) — Gsin(2t) — 27r>
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2.6 problem 1.1-3 (f)

2.6.1 Existence and uniqueness analysis. . . . . ... ... ... ...
2.6.2 Solving as quadratureode . . . . . . ... .. ...
2.6.3 Maple step by step solution . . . .. .. ... ... ... ...,

Internal problem ID [2459]

Internal file name [OUTPUT/1951_Sunday_June_05_2022_02_40_37_AM_90808783/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-3, page 6

Problem number: 1.1-3 (f).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

y =8e" +1

With initial conditions
[y(0) = 12]

2.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)
Where here

p(t) =0
q(t) =8e" +1t

Hence the ode is

y =8e" +1
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The domain of p(t) = 0 is
{—00 <t < o0}

And the point £y = 0 is inside this domain. The domain of q(t) = 8e* + ¢ is

{—o0 <t < o0}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

2.6.2 Solving as quadrature ode

Integrating both sides gives

y:/8e4t+tdt

t2
= §+2e4t+01

Initial conditions are used to solve for ¢;. Substituting ¢ = 0 and y = 12 in the above
solution gives an equation to solve for the constant of integration.

12=2+Cl

01:10

Substituting c¢; found above in the general solution gives

t2
y:§+2e4t+10

Summary
The solution(s) found are the following

t2
y:§—|—2e4t+10 (1)

96



35

300+

2504

2007

1501

1007

50

(a) Solution plot (b) Slope field plot

Verification of solutions

t2
y=§+2e4t—|—10

Verified OK.

2.6.3 Maple step by step solution

Let’s solve
[y’ = 8e" +1¢,y(0) =12]
° Highest derivative means the order of the ODE is 1

/

Yy
° Integrate both sides with respect to ¢

[y'dt= [ (Be +t)dt + ¢
° Evaluate integral
y= % +2e* + ¢;
° Solve for y
y="5+2e+¢
o Use initial condition y(0) = 12
12=2+4¢
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° Solve for ¢;
cp =10

° Substitute c; = 10 into general solution and simplify
y="1Y 42e% 410

° Solution to the IVP
y="1Y 426 410

Maple trace

“Methods for first order ODEs:

‘——— Trying classification methods ---

‘trying a quadrature ‘
‘<— quadrature successful

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

Ldsolve([diff(y(t),t)=8*exp(4*t)+t,y(0) = 12],y(t), singsol=all) J

t2
y(t) = 5 +2e* + 10

v Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 21

LDSolve[{y'[t]==8*Exp[4*t]+t,y[0]==12},y[t],t,IncludeSingularSolutions -> Trug?

y(t) — %(tZ + 4e* + 20)
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3 Problem 1.

3.1 problem 1.1-4 (a)
3.2 problem 1.1-4 (b)

1-4, page 7
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3.1 problem 1.1-4 (a)

3.1.1 Solving as separableode . . . . . .. ... ... 60}
3.1.2 Solving as linearode . . . . . ... ... ... ... ... ... 62]
3.1.3 Solving as homogeneousTypeD2ode . .. ... ......... 631
3.1.4 Solving as first order ode lie symmetry lookup ode . . .. ... 64
3.1.5 Solvingasexactode . ... ... ... ... ... ... ..... 68
3.1.6 Maple step by step solution . . . . .. ... ... ..., 2]

Internal problem ID [2460)]
Internal file name [OUTPUT/1952_Sunday_June_05_2022_02_40_40_AM_57457162/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-4, page 7

Problem number: 1.1-4 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Yy
r_ < e
v -3 0
3.1.1 Solving as separable ode
In canonical form the ODE is
y = F(t,y)
= f(t)g(y)
_Y
t
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Where f(t) = 1 and g(y) = y. Integrating both sides gives

t
1 1
—dy=—dt
Y t

1 1
/—dy=/—dt
Y t

In

(y) = () +a

y:eln(t)-i-cl
=Clt
Summary
The solution(s) found are the following

Yy =ct
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Figure 16: Slope field plot

Verification of solutions

Yy=ct

Verified OK.
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3.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)

Where here
1
) =—=
() ;
q(t) =0
Hence the ode is
r Y
A
y=3
The integrating factor u is
'u = ef_%dt
1
ot
The ode becomes
d
S =0
q tﬂy
d (Q) _
de\¢
Integrating gives
y _
;G

Dividing both sides by the integrating factor u = % results in
Yy =ct

Summary
The solution(s) found are the following

Yy =ct
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Figure 17: Slope field plot

Verification of solutions

Yy =ct
Verified OK.

3.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(t) t on the above ode results in new ode in u(t)
(@) t=0

Integrating both sides gives

Therefore the solution y is

y=tu

= tCz
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Summary
The solution(s) found are the following

y =tcy (1)
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Figure 18: Slope field plot

Verification of solutions

y=tco
Verified OK.

3.1.4 Solving as first order ode lie symmetry lookup ode
Writing the ode as
)
! —_
Y =%
Yy =uw(t,y)
The condition of Lie symmetry is the linearized PDE given by
e + w(ny - gt) - w2§y —wi§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0
n(t,y) =t

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=t

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Si+w(t,y)Sy
dR ~ R, +w(t,y)R,

(2)

Where in the above Ry, Ry, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

Yy
W(t, y) = ;

Evaluating all the partial derivatives gives

Rt_
R,=0
Y
Stz—t—2
1
Sy=73

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S (R) =C (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

Y_.

¢ 1
Which simplifies to

y_

;-
Which gives

y=ct

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates

Original ode in t,y coordinates coordinates (R, S)

transformation ’

dy _y a$s _
dt ~ t dR —
NNNNNNNVNV W H A
NSNNNNNNNV AP AP A A
NSNYNNNNNNNYNYH A A 4
\\\\\\\\it;;;;//////
S~ N N NN AAAAAS -
\\\\\\Q(Q\ WP A A S(R]
~~w s NmNNNNNY A s 2,
——sw~wa NN\ Y tpAAA oo ”
i il ston k=t
e B el I R St S
S S YN VN e e S — g . Z z R b
o o w77 AN N N N NS aa—e— t
e v w T AAAA f_%¥ NONON N N N e o
b A A E T T N
m A2 22 A VNN N Y N
AAZZZ28 PPV VNN NN N
AAZ222 0 EHE LV YN N N 4
AAZZ2727 PPV VN NN NN Y
22277220 HE LV VNN NN N
Summary
The solution(s) found are the following
y=oct (1)
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Figure 19: Slope field plot

Verification of solutions

Yy =ct
Verified OK.

3.1.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,9) + N(z,y) 2 = 0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 04d
0P o9ay _
ox + Oy dz 0 (B)
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

(2)s-()»
(ee(i)o-s

Comparing (1A) and (2A) shows that

Therefore

1

1
N(t,y) = -
ty) =7

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Ot
Using result found above gives
oM _ 9 ( 1
oy Oy\ t
=0
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And

ON_ 0 (1
ot ot\y

=0
Since %’I = %[, then the ODE is exact The following equations are now set up to solve
for the function ¢(¢,y)
9¢
— =M 1
9¢
— =N 2
o )

Integrating (1) w.r.t. ¢ gives

o6 .
E&_/M&
op . [ 1
Edt—/—gdt
¢=-In(t)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
5§=0+f@) (4)

But equation (2) says that g—‘z = zl/ Therefore equation (4) becomes
1 /
~=0+f(y) (5)
Y
Solving equation (5) for f'(y) gives
1
f'ly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=—In(t)+n(y) +a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1=—In(t) +1n(y)

The solution becomes

y = et
Summary
The solution(s) found are the following
y = et (1)
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Figure 20: Slope field plot

Verification of solutions

y =elt

Verified OK.
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3.1.6 Maple step by step solution

Let’s solve
y—4=0
° Highest derivative means the order of the ODE is 1
yl
° Separate variables
y _1
Yy t

° Integrate both sides with respect to ¢
JLdt= [1dt+c

° Evaluate integral
In(y)=In(t) + ¢
° Solve for y
y = et

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

Ldsolve(diff(y(t),t)=y(t)/t,y(t), singsol=all)

y(t) = cit
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v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 14

kDSolve [y' [t]==y[t]l/t,y[t],t,IncludeSingularSolutions -> True]

y(t) = at
y(t) =0
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3.2 problem 1.1-4 (b)

3.2.1 Solving as separableode . . . . . .. ... .. oL [74
3.2.2 Solving as homogeneousTypeD2ode . . ... ... ... .... 761
3.2.3 Solving as differentialTypeode . . ... ... ... ... .... 78
3.2.4 Solving as first order ode lie symmetry lookup ode . . .. ... 79
3.25 Solvingasexactode . . ... ... ... ... ... ... ... 83
3.2.6 Maple step by step solution . . . . ... ... ... L. BT

Internal problem ID [2461]
Internal file name [OUTPUT/1953_Sunday_June_05_2022_02_40_42_AM_12687518/index. tex]|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-4, page 7

Problem number: 1.1-4 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

y+-=0
Yy
3.2.1 Solving as separable ode
In canonical form the ODE is
y = F(t,y)
= f(t)g(y)
__t
Yy

Where f(t) = —t and g(y) = 11/ Integrating both sides gives

dy = —tdt

< |=| =



Which results in

Summary
The solution(s) found are the following

y=+—t24+2c (1)
y=—v—-t2+2¢ (2)
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Figure 21: Slope field plot
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Verification of solutions

y=V-1+2

Verified OK.
y= P

Verified OK.

3.2.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(t) t on the above ode results in new ode in u(t)

w(t)t + u(t) + ﬁ =0

In canonical form the ODE is

u = F(t,u)
= f(t)g(u)
u?+1

 tu

Where f(t) = —1 and g(u) = ““*1. Integrating both sides gives

1 1

1 1
In(u?+1
#z_ln(t)+c2

Raising both side to exponential gives

/u2 + 1=e In(t)+-c2

Which simplifies to

Ve ——
t
Which simplifies to
C2
ut)y’+1= 03:
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The solution is

C2
VU@Y+1=Cf

Replacing u(t) in the above solution by ¥ results in the solution for y in implicit form

y? c3€e°2

7 11=

t2 + t

y2 + t2 . 03602
2t

Summary
The solution(s) found are the following

Y2 +12 cze
= 1
22 ; (1)
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Figure 22: Slope field plot

Verification of solutions

Y2 +12  ce®
2t

Verified OK.
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3.2.3 Solving as differentialType ode
Writing the ode as

Which becomes

Hence (2) becomes

(y)dy = d(—g)

Integrating both sides gives gives these solutions

y=-12+2c +c
y=—v-t2+2c+c

Summary
The solution(s) found are the following

y=+\—-1t24+2c +¢
y=—V—-1t24+2c+c;
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Figure 23: Slope field plot

Verification of solutions

y=vC§:EE+q
Verified OK.

y=—V—-2+2 +c
Verified OK.

3.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

d=—£
y

Y =w(ty)
The condition of Lie symmetry is the linearized PDE given by
me+w(ny — &) — w2§y —w —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

ﬁ(t,y) = _%

n(t,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _dy _

— as

§ n

(1)

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case
R=y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Si+w(t,y)Sy
dR R, +w(t,y)R,

(2)

Where in the above Ry, R,, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

t
UJ(t, y) = _5

Evaluating all the partial derivatives gives

R, =0
R, =

S, = —t
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

dR
We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

Y (2A)

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

2

R
S(R) = —+Cl

2

(4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This

results in

Which simplifies to

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Canonical

. . . . ODE in canonical coordinates

Original ode in ¢,y coordinates coordinates (R, S)
transformation ’
dy _ _t s __
a ~ Ty iz =R
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Summary
The solution(s) found are the following
t2 y2
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Figure 24: Slope field plot

Verification of solutions

Verified OK.

3.2.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
—_— —_— —y =
ox + Oy dz 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)
Therefore
(—y)dy = () dt
(—t)dt+(-y)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(t,y) = —t
N(t,y) = —y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
T = (¢
9y 9y )
=0
And
ON 0
ot a(—y)
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oM _ ON

Since By = a0 then the ODE is exact The following equations are now set up to solve

for the function ¢(t,y)

96
g_t_M (1)
¢ _

=N @)

Integrating (1) w.r.t. ¢t gives
o dt = /Mdt
ot

6—¢dt = /—tdt

ot

s=-1 1+ 1w) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

9¢

=0 ! 4

=0+ (@)
But equation (2) says that g—‘z = —y. Therefore equation (4) becomes

—y=0+f(y) ()

Solving equation (5) for f’'(y) gives
F'ly)=—y
Integrating the above w.r.t y gives

[rwa= [ v

2

f(y)z—%‘i‘cl
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
t2 y2
= —_-——— —|— C
¢ 5~ g ta
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining c¢; and ¢, constants into new constant c; gives the solution as

Summary
The solution(s) found are the following
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Figure 25: Slope field plot

Verification of solutions

Verified OK.
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3.2.6 Maple step by step solution

Maple trace

Let’s solve
y+,=0
Highest derivative means the order of the ODE is 1

/

Yy

Separate variables

yy=—t

Integrate both sides with respect to ¢
[yydt = [ —tdt + ¢,

Evaluate integral

T

Solve for y

{y=vVTF 2,y = —/ P F2)

-

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

Ldsolve(diff(y(t),t)=—t/y(t),y(t), singsol=all)

~—

W)= VP
W)=~/



v/ Solution by Mathematica
Time used: 0.105 (sec). Leaf size: 39

kDSolve [y' [t]==-t/y[t],y[t],t,IncludeSingularSolutions -> True]

y(t) = —v/—t2 4+ 2¢;
y(t) = V=12 +2¢
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4 Problem 1.1-5, page 7

4.1 problem 1.1-5
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4.1 problem 1.1-5

4.1.1 Solving as quadratureode . . . . . .. ... ... ...
4.1.2 Maple step by step solution . . . . ... ... .....

Internal problem ID [2462]

Internal file name [OUTPUT/1954_Sunday_June_05_2022_02_40_45_AM_34903495/index . tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-5, page 7

Problem number: 1.1-5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

Y-y +y=0

4.1.1 Solving as quadrature ode

1
/?ﬂ—ydyz/dt

In(fy—1)—In(y)=t+c

Integrating both sides gives

Raising both side to exponential gives

eln(y— 1)-In(y) _ et+c1

Which simplifies to

-1
Y — cyet
Summary
The solution(s) found are the following
. 1
y -1+ Cget
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Figure 26: Slope field plot

Verification of solutions

1

i

Verified OK.

4.1.2 Maple step by step solution

Let’s solve
Y-y +y=0
. Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
y
yi-y 1

° Integrate both sides with respect to ¢
JA5dt= [1dt+c

. Evaluate integral
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In(y—1)—In(y)=t+a
° Solve for y

_ 1
Y= —gFa1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

Ldsolve(diff(y(t),t)=y(t)“2-y(t),y(t), singsol=all)

_ 1
R

y(t)

v/ Solution by Mathematica
Time used: 0.242 (sec). Leaf size: 25

LDSolve[y'[t]==y[t]“2—y[t],y[t],t,IncludeSingularSolutions -> True]

v = e

y(t) —0
y(t) =1
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5.1
5.2
5.3
5.4

Problem 1.1-6, page 7

problem 1.1-6 (&) . . . . . . . . ... 94
problem 1.1-6 (b) . . . . . . ... 97
problem 1.1-6 (¢) . . . . . . . . . 100
problem 1.1-6 (d) . . . . . . .. .. 103l
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5.1 problem 1.1-6 (a)

5.1.1 Solving as quadratureode . . . . . . .. ... ... ...
5.1.2 Maple step by step solution . . . .. ... ... ... ..

Internal problem ID [2463]

Internal file name [OUTPUT/1955_Sunday_June_05_2022_02_40_48_AM_33782510/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-6, page 7

Problem number: 1.1-6 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature'
Maple gives the following as the ode type

[_quadrature]

Yy —y=-1

5.1.1 Solving as quadrature ode

1
/—y_ldy—/dt

In(y—1)=t+¢

Integrating both sides gives

Raising both side to exponential gives
y—1=e"a
Which simplifies to

y—1=cye

Summary
The solution(s) found are the following

y=cee +1
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Figure 27: Slope field plot

Verification of solutions

y=coe' +1
Verified OK.

5.1.2 Maple step by step solution

Let’s solve

y-—y=-1
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
yy—l =1

° Integrate both sides with respect to ¢
[5dt = [1dt + ¢

. Evaluate integral
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h(y—1)=t+ac
° Solve for y

y=eta+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve(diff(y(t),t)=y(t)-1,y(t), singsol=all)

y(t) = 1+é'c

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 18

LDSolve[y'[t]==y[t]-1,y[t]JhIncludeSingularSolutions -> True]

y(t) = 1+ cé
y(t) =1
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5.2 problem 1.1-6 (b)

5.2.1 Solving as quadratureode . . . . . . ... ... ... 97l
5.2.2 Maple step by step solution . . . . . ... ... O8]

Internal problem ID [2464]
Internal file name [OUTPUT/1956_Sunday_June_05_2022_02_40_50_AM_17490583/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-6, page 7

Problem number: 1.1-6 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature'
Maple gives the following as the ode type

[_quadrature]

y+y=1

5.2.1 Solving as quadrature ode

1
Jimyn= |

—In(l—-y)=t+c

Integrating both sides gives

Raising both side to exponential gives

1 — et+01
-y
Which simplifies to
1
1T = Cget
Summary
The solution(s) found are the following
et
y=——+1 (1)
&)
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Figure 28: Slope field plot

Verification of solutions

Verified OK.

5.2.2 Maple step by step solution

Let’s solve
y+y=1
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
1zliy =1

° Integrate both sides with respect to ¢
Ji5dt = [1dt +

. Evaluate integral
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—ln(l-y)=t+¢
° Solve for y

y — _e—t—Cl + 1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(t),t)=1—y(t),y(t), singsol=all)

y(t) =1+e e

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 20

LDSolve[y'[t]== -y[t],y[t],t,IncludeSingularSolutions -> Truel

y(t) = 1+ e’
y(t) =1
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5.3 problem 1.1-6 (c)

5.3.1 Solving as quadratureode . . . . . . .. ... ... ... 100l
5.3.2 Maple step by step solution . . . . . . ... ... ... ... .. 107

Internal problem ID [2465]
Internal file name [OUTPUT/1957_Sunday_June_05_2022_02_40_52_AM_89102964/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-6, page 7

Problem number: 1.1-6 (c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

Y~y +y*=0

5.3.1 Solving as quadrature ode

1
/ﬁ—%wz/ﬁ

v 1
| e gtemtea

Integrating both sides gives

Summary
The solution(s) found are the following

Y 1
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Figure 29: Slope field plot

Verification of solutions

Verified OK.

Maple step by step solution

5.3.2

Let’s solve

0

Highest derivative means the order of the ODE is 1

Integrate both sides with respect to ¢

Separate variables

dt=f1dt+cl

y/
y3 _y2

Evaluate integral
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In(y—1)+,-In(y)=t+a

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v/ Solution by Maple
Time used: 0.109 (sec). Leaf size: 16

Ldsolve(diff(y(t),t)=y(t)‘3—y(t)‘2,y(t), singsol=all)

1
ylt) = LambertW (—c;et—1) + 1

v Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 38

LDSolve[y'[t]==y[t]“3—y[t]“2,y[t]JhIncludeSingularSolutions -> True]

y(t) — InverseFunction % +log(1 — #1) — log(#1)&| [t + c1]

y(t) =0
y(t) =1
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5.4 problem 1.1-6 (d)
5.4.1 Solving as quadratureode . . . . . . ... ... ... 103l
5.4.2 Maple step by step solution . . . . . . ... ... ... ... .. 104!

Internal problem ID [2466]
Internal file name [OUTPUT/1958_Sunday_June_05_2022_02_40_58_AM_15291467/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.1-6, page 7

Problem number: 1.1-6 (d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y+y' =1

5.4.1 Solving as quadrature ode

Integrating both sides gives

1
_y2+1dy=t+cl

arctanh (y) =t + ¢;
Solving for y gives these solutions
y1 = tanh (¢t + ¢;)

Summary
The solution(s) found are the following

y = tanh (t + ¢;) (1)
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Figure 30: Slope field plot

Verification of solutions

y = tanh (t + ¢1)
Verified OK.

5.4.2 Maple step by step solution

Let’s solve
y+y=1
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
=1

. Integrate both sides with respect to ¢
[Lydt = [1dt + ¢

1—y2

° Evaluate integral
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arctanh(y) =t + ¢
° Solve for y

y = tanh (¢ + ¢1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

Ldsolve(diff(y(t) ,t)=1-y(t)"2,y(t), singsol=all)

y(t) = tanh (¢t + ¢1)

v Solution by Mathematica
Time used: 0.713 (sec). Leaf size: 44

LDSolve[y'[t]==1—y[t]“2,y[t],t,IncludeSingularSolutions -> True]

e2t _ g2c1
V) = e
y(t) —» -1
y(t) > 1
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Problem 1.2-1, page 12

problem 1.2-1 (&) . . . . . . . . .. 107
problem 1.2-1 (b) . . . . . ... L 122
problem 1.2-1 (¢) . . . . . . .. . 125
problem 1.2-1 (d) . . . . . . . . .. 138
problem 1.2-1 (€) . . . . . . . . . e 1511
problem 1.2-1 (f) . . . . . ... ... 164
problem 1.2-1 (g) . . . . . . . . .. I
problem 1.2-1 (h) . . . . . . .. .. 1901
problem 1.2-1 () . . . . . . . . e 2031
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6.1 problem 1.2-1 (a)
6.1.1 Solving as separableode . . . . . . ... ... L.
6.1.2 Solving as linearode . . . . . .. ... ... ... ..
6.1.3 Solving as homogeneousTypeD2ode . . ... ... . ... ...
6.1.4 Solving as first order ode lie symmetry lookup ode . . .. ...
6.1.5 Solvingasexactode . .. .. .. ... ... ... ... .....
6.1.6 Maple step by step solution . . . . ... ... ... L.

Internal problem ID [2467]

107
109
1101
112
116
1120

Internal file name [OUTPUT/1959_Sunday_June_05_2022_02_41_00_AM_8212680/index. tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",

"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

y—(+1)y=0

6.1.1 Solving as separable ode
In canonical form the ODE is
y =F(ty)

= f(t)g(y)
=(t*+1)y
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(1)

B4t+e

1

es

t3+t+c1
1,3
cle 3t3+t

dy =t>+1dt
Y

dy:/t2+1dt

In (y) =
y = cle%ts’%

1
Y

/

111111 ~ N\ / \ T ==
///// —~~= N\ / \ g |
————~~~\\V S
~—~—~—~~~N\\W\NV
~~~~>~~\\\\\1/ /]
S~~~ NN\\\N\VMVNV S

————~~~~\\N YV
///// —~~= N\ / \ J7mm =T
111111 ~~~N\/ r—m—m—————

Where f(t) = t*> + 1 and g(y) = y. Integrating both sides gives

The solution(s) found are the following

Summary

1.3
— ciestHt
108

Figure 31: Slope field plot
Y

Verification of solutions

Verified OK.



6.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)
Where here

p(t) = —t* — 1
q(t) =0

Hence the ode is
y+(—t*—1)y=0

The integrating factor y is
p= el (-t?-1)dt

—3t3—t
Which simplifies to

t(t2+3)
The ode becomes

d
S =0
Y

t(t2+3
%(e‘ ( 3 )y> =0

t (t2 +3)
e 3 y = Cl

Integrating gives

t (t2+3)

Dividing both sides by the integrating factor y = e~ 3 results in

t(t2+3)
Yy =ce 3

Summary

The solution(s) found are the following

t(t2+3)

y:cle 3
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Figure 32: Slope field plot

Verification of solutions

t(+2+3)

3

Y = ci€e

Verified OK.

6.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(t) ¢ on the above ode results in new ode in u(t)

W) t+u(t) — (F+1)u®)t=0

In canonical form the ODE is

F(t,u)

~,

u

Ft)g(u)

u(t®+t—1)
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L and g(u) = u. Integrating both sides gives

t

_ 4t—

Where f(t)

+t—In(t)
+t—In(t)

3
+3

+t—In(t)+c
the?

+t—In(t)+c2

+3

Co€ 3

+3

u=-es3

t3
tcoe

3

In(u) =

The solution(s) found are the following

Therefore the solution y is

Summary

(1)

+t—In(¢)

y:
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Figure 33: Slope field plot
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Verification of solutions

8

y = tcge +t—In(t)

Verified OK.

6.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y=(t+1)y
Y = w(t,y)

The condition of Lie symmetry is the linearized PDE given by
ne+w(ny — &) — wzgy —w —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(t,y) =0
n(t,y) = est+t (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt _ dy _

— as

§ n

1)

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

5= [ Lay
n
_ 1

/ est+t dy

143
S=e3" "y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS N St-l-w(t,y)Sy

iR~ Ritwlty)R, @

Where in the above R, Ry, St, S, are all partial derivatives and w(t, y) is the right hand
side of the original ode given by

w(t,y) = +1)y
Evaluating all the partial derivatives gives

R, =1
Ry=0
t(t2+3
Sp=—(+1)e 3 y
¢(+2+3)
Sy = e_ 3
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
= -0 2A
iR (24)
We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar Y
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =, (4)
To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

¢(+2+3)
e 3 yYy=q

Which simplifies to

Which gives

Yy=-ce 3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) ) : ODE in canonical coordinates
Original ode in ¢,y coordinates coordinates (R, S)
transformation ’
d 2 ds
W (21 1)y ar =0
t trtrttrfr ettt t
t trrtrr ettt t
trtttar et 4
RERSE RN
SECRVRRRRS SR
trtrrxartttt 24
tttrrr770 001
trtt oA S R=t
B RN Y SRR
R NN SR B dGaL) I ] I
NN NN =e 3y L
L#LX\.%\\l&L& =77
N R
T R T R A
R A EEEEE
R R ERE] #
R
R IR EREE
Summary
The solution(s) found are the following
t(t2+3)
y=-ce 3 (1)
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Figure 34: Slope field plot

Verification of solutions

t(+2+3)

3

c1€e

y:

Verified OK.

6.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(@,y) 2 = 0

g

=]
e
| y___m
= =S
i I
Sy +
]
R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(t,y)dt+N(t,y)dy =0 (1A)

Therefore
1 2
” dy = (?+1) dt

(—t*—1)dt+ i) dy=0 (24)

Comparing (1A) and (2A) shows that
M(t,y) = —t*—1

1
N(t,y) = —
(t,y) y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
dy Ot

Using result found above gives

oM 8, ,
oy =yt
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And

ox_o (1)
ot  ot\y
=0

OM _ 8N

Since Sy = P then the ODE is exact The following equations are now set up to solve

for the function ¢(t,y)
¢ _

o~ M (1)
¢
oy =V 2)

Integrating (1) w.r.t. ¢ gives
99 41 — / Mt
ot

0 . _ [ _2_
Edt—/ £ —1dt

b=—38 4 (9) ©

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

9¢
20 ! 4
=0+ 1) @
But equation (2) says that g—‘z = zl/ Therefore equation (4) becomes
1 /
~=0+f(y) (5)
Y
Solving equation (5) for f’(y) gives
1
f'ly) =—
W)=
Integrating the above w.r.t y gives
, 1
Fdy= [ ()

fly)=In(y) +a
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1)

t+In(y) +a
t+1n(y)

e§t3+t+c1
e%t3+t+c1

t3
_g_

y:

y:

C1 =

o=

111111 —~ N\ / \ e
///// —~~=\ / \ g |
—~——~~~N\\\\NV /S
—~—~~~~N\\\\1 /|
S~~~ NN\\\\Y1V /S

————~~~ N\
///// —~~=\ / \ J 7= [
111111 ~~N\/

Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary

t

Figure 35: Slope field plot
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Verification of solutions

y = e%t3+t+cl

Verified OK.

6.1.6 Maple step by step solution

Let’s solve
Y —t2+1)y=0
° Highest derivative means the order of the ODE is 1

/

Yy

° Separate variables
Yy _ 42
, =t +1

° Integrate both sides with respect to ¢
Jidt=[(+1)dt+c
° Evaluate integral

In(y) =33+t +c

° Solve for y
1.3
y f— egt +t+C1

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

N

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(diff(y(t),t)=(t“2+1)*y(t),y(t), singsol=all)
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v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 24

kDSolve [y' [t]==(t"2+1)*y[t],y[t],t,IncludeSingularSolutions -> True]
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6.2 problem 1.2-1 (b)
6.2.1 Solving as quadratureode . . . . . . ... ... ... 1221
6.2.2 Maple step by step solution . . . . . ... ... ... ... ... 123

Internal problem ID [2468]
Internal file name [OUTPUT/1960_Sunday_June_05_2022_02_41_02_AM_48108646/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y+y=0

6.2.1 Solving as quadrature ode

Integrating both sides gives

1 — et+01
Y
Which simplifies to
= =cye
Summary
The solution(s) found are the following
e—t
= 1
y=" 1)
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Figure 36: Slope field plot

Verification of solutions

Verified OK.

6.2.2 Maple step by step solution

Let’s solve
y+y=0
Highest derivative means the order of the ODE is 1

/

Y
Separate variables
v — _q

y
Integrate both sides with respect to ¢

JLdt=[(-1)dt+c

Evaluate integral
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In(y)=—t+ac
° Solve for y

y — e—t-‘rcl

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

tdsolve(diff(y(t),t)=-y(t),y(t), singsol=all)

y(t) = e 'c;

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18

LDSolve[y'[t]==-y[t],y[t],t,IncludeSingularSolutions -> True]

y(t) = cre”’

y(t) = 0
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6.3 problem 1.2-1 (c)

6.3.1 Solving as linearode . . . . .. ... ... ... ... .. 125]
6.3.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 127
6.3.3 Solvingasexactode .. ... ... ... . ............ [131]
6.3.4 Maple step by step solution . . . . . . ... ... ... ... 135

Internal problem ID [2469]
Internal file name [OUTPUT/1961_Sunday_June_05_2022_02_41_05_AM_14012892/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (c).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, ~“class A~]]

3t

y—2y=e

6.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)

Where here

p(t) = -2

q(t) =e
Hence the ode is

y —2y=e

The integrating factor u is

p = el (2

— e—2t
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The ode becomes

%(uy) = (u) ()

S(ey) = () ()
d(e *y) = e dt

e 2y = /e_5t dt

e—5t

2t
e =——+4c¢
Y 5 +c

Integrating gives

Dividing both sides by the integrating factor u = =2 results in

2t 5t
+ ¢

which simplifies to

(5cie%t — 1) e~

Summary
The solution(s) found are the following

(5cie® — 1) e~
)
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Figure 37: Slope field plot

Verification of solutions

(5cie® — 1) e~
)

Verified OK.

6.3.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

Yy =2y+e
Y =w(ty)

The condition of Lie symmetry is the linearized PDE given by

Ur + W(ny - gt) - wzgy - wt§ — Wy = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 31: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0

n(t,y) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
1

S =e2y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

das _ Si + w(t, y)Sy 2)
dR R+ w(t,y)R,

Where in the above R:, Ry, St, S, are all partial derivatives and w(¢,y) is the right hand
side of the original ode given by

w(t,y) =2y +e

Evaluating all the partial derivatives gives

Rt = 1
R,=0

St = -2 e_2ty
S, =e*

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS -5t
R (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

@0 _ o5R

dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
e—5R

S(R)=—T+Cl (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

2t e
e “'y=——+c
Yy 5 +a

Which simplifies to
—5t
—2t €

e ly=—"++c¢
) 5 1

Which gives

(e75t — Bey) e

5
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Yy=-

Canonical . . )
- . . . ODE in canonical coordinates
Original ode in ¢,y coordinates coordinates (R, S)
transformation ’
dy -3t dS _ ,—5R
dt_2y+e dR_e
trtrr ettt e oo e e o
tHttrttrttrt [ .
tattrt ) T N
PREEEEEERL] ISessasase:
@y plrprrrrrrss SUR) § AT
AR Hewoso oo oo os
AR flr—e—oorrroos
ARy, oot
f pPlrrmmmm 7w m R=t flrososo oo oo os
OB B NS NNN e TR
el — > —>—b— —>—>—b—>
RS NN NNV €y IR
‘L%.&&\X&\X&\:& _;A/ ﬁﬁﬁﬁﬁﬁﬁﬁﬁ
IR R oo
TR T A [ N
Bl EEEEEEER, froaroes
Pt = R SR T S 25 1
IR I EEEERERRE ]
IR IR R R EE R Mo ooosooss
Summary
The solution(s) found are the following
—5t 2
(e —5¢y) e
y= - 1)
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Figure 38: Slope field plot

Verification of solutions

Verified OK.

6.3.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 06 04d
—_— —_— —y =
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

dy = (2y+e)dt
(—2y—e™)dt+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(ty)=—2y—e™
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
Dl _2 _ a3t
oy — oy )
= -2
And
ON 0
ot~ ot
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Since %i; # %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A 1 /0M ON

N\ 0y ot

=1((=2) - (0))

= -2
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
— ol Adt

— o —2dt

W

The result of integrating gives

p=e

— e—2t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM

_ e—2t(_2y _ e—3t)

=—e " (2y+e¥)
And

N =uN
=e %(1)

— e 2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—  _dy
M+N-—==0
MR
d
(—e(2y+e7)) + () L =0
The following equations are now set up to solve for the function ¢(¢,y)

op —
— =M 1
ot (1)
oo —
=N 2
o &)
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Integrating (1) w.r.t. ¢ gives
9 41 — / Madt
ot

o _ _
adt:/—e 2t(2y+e 3t) dt

-5t

=" +e Y+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

8 2t /
5§=€'+f@) (4)

But equation (2) says that g—‘z = e~ 2. Therefore equation (4) becomes

e =e"2+ f(y) (5)
Solving equation (5) for f'(y) gives
f'ly)=0
Therefore
fy)=a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
—5t

e
¢=?+e_2ty+c1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cp constants into new constant c¢; gives the solution as

e—5t

C1 = T + e_%y

The solution becomes
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Summary

(1)

The solution(s) found are the following
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Figure 39: Slope field plot

Verification of solutions

Verified OK.

6.3.4 Maple step by step solution

Let’s solve

yl _ 2y — e—3t

Highest derivative means the order of the ODE is 1

Isolate the derivative
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Y =2y+e 3

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—2y=e*

The ODE is linear; multiply by an integrating factor u(t)
p(t) (y' —2y) = p(t) e™

Assume the lhs of the ODE is the total derivative 4 (u(t) y)
ut) (' —2y) = W @)y + p@)y

Isolate p'(t)

w(t) = —2u(t)

Solve to find the integrating factor

) = e

Integrate both sides with respect to ¢

[ (L(ut)y)) dt = [ u(t)e3dt + o,
Evaluate the integral on the lhs

p(t)y = [ ut)edt+c

Solve for y
_ [u@)e 3 dt+a
Yy=""uw

Substitute u(t) = e 2

_ [e3te 2ttt
y =l

Evaluate the integrals on the rhs

—5t

y= = 5—2t+01
Simplify

_ (BerePt—1)e3¢
Y= %
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(diff(y(t),t)=2*y(t)+exp(-3*t),y(t), singsol=all)

5t_1 —3t
y(t)=(5cle . e

v Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 23

LDSolve[y'[t]==2*y[t]+Exp[—3*t],y[t],t,IncludeSingularSolutions -> True]
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6.4 problem 1.2-1 (d)

6.4.1 Solving as linearode . . . . . ... ... ... ... ... 138]
6.4.2 Solving as first order ode lie symmetry lookup ode . . .. . .. [1401
6.4.3 Solvingasexactode .. ... ... ... ... ... ..... 144
6.4.4 Maple step by step solution . . . .. ... ... ... .. ... 148

Internal problem ID [2470]
Internal file name [OUTPUT/1962_Sunday_June_05_2022_02_41_08_AM_79796114/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, ~“class A~]]

y'—2yze2t

6.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)

Where here
p(t) = -2
q(t) =
Hence the ode is
y —2y=¢e
The integrating factor u is
p = el (2

— e—2t
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The ode becomes

(e—2t) (eZt)
dt

- / at
t+c

(by) = (1) (¢*)

dt
(e—Qty)
d (e—Zty)
e—2ty
e—2ty

dt

Integrating gives

= e?t + ;e

Y

Dividing both sides by the integrating factor u = e~ results in

which simplifies to

y=e*(t+c)

The solution(s) found are the following

Summary

1)

y=e*(t+c1)
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Verification of solutions

y=e* (t+c1)
Verified OK.

6.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y =2y +e*
Y =wl(ty)

The condition of Lie symmetry is the linearized PDE given by
m+w(ny — &) — Wy —wé —wn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0

n(t,y) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
1

S =e2y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

das _ Si + w(t, y)Sy 2)
dR R+ w(t,y)R,

Where in the above R:, Ry, St, S, are all partial derivatives and w(¢,y) is the right hand
side of the original ode given by

w(t,y) =2y +e*

Evaluating all the partial derivatives gives

Rt = 1
R,=0

St = -2 e_2ty
S, =e*

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

1 (2A)

1

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+¢ (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

e ly=t+c

Which simplifies to

ey =t+c
Which gives

y=e*(t+cp)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. . . : ODE in canonical coordinates
Original ode in ¢,y coordinates coordinates
. (R, S)
transformation

dy _ 2t ds __

@ =2yte m=1
trrttrrrenttt R R R R R R
prtttttrr ettt AAPAPAARAANAAAAA AL
rrrrrttttattt R s L R R R
A A A A A A N A APPSR PR AANAAAAS AL
AR T AV R o R R R R
fffffff?f;ff? AP PPN PIIFISSS
A A A A A A A T AAPAPAAAAINAAAAS AL
PREPEALLEH LS R R R R R R
FPAPAAPPLLALLE R— FARPAPPAAIAANF A AAPFASP S
e Vi I =1 JIPSI PPN PSS
SN/ TR A R R G TR
NN NN NN NN A S::e_%y //////////////QV////
RN A S TR R R
&&&&&&\&k%\/? AAAAAPAAALNA AR S
R AAAAAPAAPANA AP AAAAAS
R IR R R R L R R s
R R PAPAPAPAAPANA AP AAAAAS
R LR PAAAAPAAAMNS AP AP
R R R R R R R R R R
R R RIIRN AAPAPPAPAAAAAAS AL

Summary
The solution(s) found are the following
2t
y=e(t+a) (1)
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Verification of solutions

Y= e2t(t +¢)

Verified OK.

6.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

)
=]
]
I y___m
= =S
i I
Sy +
]
R

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

dy = (2y +€*)d¢
(—2y —e*)dt+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(t,y) = -2y —e”
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
Dl _2 a2t
oy — oy )
= -2
And
ON 0
ot~ ot
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Since %i; # %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A 1 /0M ON

N\ 0y ot

=1((=2) - (0))

= -2
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
— ol Adt

— o —2dt

W

The result of integrating gives

nw=e
_ o2t
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= e 2 (—2y — &%)
=—2e %y —1
And
N =uN
=e %(1)
— e 2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—  _dy
M+N-—==0
MY
d
(~2ey—1) + (e7) 3 =0
The following equations are now set up to solve for the function ¢(¢,y)

op —
— =M 1
ot (1)
oo —
— =N 2
o &)
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Integrating (1) w.r.t. ¢ gives

—dt /Mdt

% ., e
6t / —2e 1d¢

p=—t+e P y+ f(y)

(3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.

Taking derivative of equation (3) w.r.t y gives

But equation (2) says that g—‘g = e~ 2. Therefore equation (4) becomes
e—2t — e—2t + f/(y)

Solving equation (5) for f'(y) gives
f'y)=0

Therefore

fy)=a

(4)

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
p=—t+e y+oc

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

e =—t+e 2y

The solution becomes
y=e*(t+c)

Summary
The solution(s) found are the following

y=e"(t+c)
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Figure 42: Slope field plot

Verification of solutions

y=e*(t+c1)
Verified OK.

6.4.4 Maple step by step solution

Let’s solve
yl _ 2y — e2t
. Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
Yy =2y +e*

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y — 2y = e

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (v — 2y) = p(t) e*
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o Assume the lhs of the ODE is the total derivative 2 (u(t)y)

p@) (v —2y) = /@)y + p@) ¥
o Isolate u'(t)

p(t) = —2u(t)
° Solve to find the integrating factor
pt) =e™

° Integrate both sides with respect to ¢

[ (L(pt)y)) dt = [ p(t)e®dt + ¢,
. Evaluate the integral on the lhs

p(t)y = [ u(t)e*dt +c

° Solve for y
_ Ju@®)etdtte
Y=""u0

e  Substitute u(t) = e~

_ [e?e2dttcy

y "
° Evaluate the integrals on the rhs
y=%
° Simplify

y=e(t+cy)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(t),t)=2*y(t)+exp(2*t),y(t), singsol=all)

y(t) = (t+c1)e”

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 15

LDSolve [y' [t]==2xy[t]+Exp[2*t],y[t],t,IncludeSingularSolutions -> True]

y(t) = e*(t +c1)
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6.5 problem 1.2-1 (e)

6.5.1 Solving as linearode . . . . . . ... ... ... ... 151
6.5.2 Solving as first order ode lie symmetry lookup ode . . ... .. 153
6.5.3 Solvingasexactode ... ... .................. 157
6.5.4 Maple step by step solution . . . .. ... ... ... ... ... 16Tl

Internal problem ID [2471]
Internal file name [OUTPUT/1963_Sunday_June_05_2022_02_41_10_AM_20563059/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (e).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, ~class A"]]

y+y=t

6.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +pt)y = q(t)

Where here
p(t) =
q(t) =1t
Hence the ode is
y+y=t
The integrating factor u is
= el 1t
= et
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The ode becomes

Integrating gives
ely = / e'tdt
ey=(t—-1)e"+c
Dividing both sides by the integrating factor u = e’ results in
y=e'(t—1)e' +cre’
which simplifies to
—t

y=t—1+ce

Summary
The solution(s) found are the following

y=t—1+ce™’ (1)
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Figure 43: Slope field plot
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Verification of solutions

y=t—1+ce™’
Verified OK.

6.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y=—y+t
Y =wl(ty)

The condition of Lie symmetry is the linearized PDE given by
e+ w(ny — &) — Wy —wé —wn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that
£(t,y) =0
n(t,y) =e*

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

(A1)

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
1

S =ely

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dsS . St+W(t,y)Sy

dR ~ R, +w(t,y)R, @)

Where in the above R:, Ry, St, S, are all partial derivatives and w(¢,y) is the right hand
side of the original ode given by

w(t,y) =—-y+t

Evaluating all the partial derivatives gives

thl
R,=0
St:ety
S, =¢e

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dS g
E—GR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

e't (2A)

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=(R—1)ef +¢, (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

ey=(t—1)e"+¢
Which simplifies to
ey=(t—1)e" +¢c
Which gives
y=(e't—e'+ci1)e?

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . : ODE in canonical coordinates
Original ode in ¢,y coordinates coordinates (R, S)
transformation ’
dy _ _ dS _ AR
@ = Y+t R=¢'R
AL RV VLV MY VN VNN e — e ff Ot
D A N N e e I
R RRRRR Rt O
S | == ]
~— AL | s ~ a7
RERREECRE| NNN i LTSRS b
T 1 T S A [ B e ~~a g g f 4t
VAV Y VN NNNN NS e ——aar A F 4
VALV VN NN s pE p R— L b 1
VALY NNNNNS A S = el e f }
VYNNI NSl 7 A PR T " R B S A N A
VAVN NN 2 2 F R p Tt S = ety el 7 P
VANN NS~ t I S Iy
VAN NN g e e asapelr A fF
NN NN AR e A P
NNNSwe A AP e £
R L R N N NN N N ORI SRR R
N N IS RN RN RN A1}t
N 2 A R IR R S R R N N (e e 1}
N RN RN IR NN R RN el A P 1
Summary
The solution(s) found are the following
y=(et—e'+a)e” (1)
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Figure 44: Slope field plot

Verification of solutions

y=(et—e" +c1)e

Verified OK.
6.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%Qb(xa y) =0

Hence 305 96 d
ay
oz oy Oy dz =0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

dy = (—y+1t)dt
(y—t)dt+dy=0 (2A)

Comparing (1A) and (2A) shows that
M(t,y)=y—t
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
T = (y—t
o oy (y—1)
=1
And
ON 0
ot~ ot
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Since %i; # %—If, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M 6N
N (a_y a E)
= 1((1) - (0))
=1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Adt
_ oJat

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

=e'(y —t)
= —€'(-y+1)

And
=e'(1)
¢

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—  _dy
M+N-—==0
MY
d
(—e'(—y+1) + () L =0
dt
The following equations are now set up to solve for the function ¢(¢,y)
op —
— =M 1
ot (1)
oo —
— =N 2
o &)
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Integrating (1) w.r.t. ¢ gives
9 41 — / M dt
ot

N Y
Edt—/ e (—y + t) dt

p=—(t—y—1)e"+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

0 _ & o
3y~ ° + () (4)

But equation (2) says that g—‘z = e'. Therefore equation (4) becomes

e’ =e'+ f(y) (5)
Solving equation (5) for f'(y) gives
f'ly) =0
Therefore
fly) =a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=—(t—-y—1e+ac

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

co=—(t—y—1)¢

The solution becomes
y=(et—e' +c1)e

Summary
The solution(s) found are the following

y=(et—e +ec1)e (1)
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Figure 45: Slope field plot

Verification of solutions

y=(et—e" +c1)e
Verified OK.

6.5.4 Maple step by step solution

Let’s solve
y+y=t
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=-y+t

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y+y=t
° The ODE is linear; multiply by an integrating factor u(t)
u(t) (' +y) = p)t
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o Assume the lhs of the ODE is the total derivative 2 (u(t)y)

pt) ' +y)=p @)y +u)y
o Isolate u'(t)

w(t) = p(t)
° Solve to find the integrating factor
pu(t) = e

° Integrate both sides with respect to ¢

J(L(ut)y)) dt = [ p(t)tdt +

° Evaluate the integral on the lhs
pt)y = [nu)tdt +c

° Solve for y
_ Ju@®)tdt+er
V="
o Substitute u(t) = e
y = J ettgt—i-cl
° Evaluate the integrals on the rhs
y= (t—lljt-i-cl
° Simplify
y=t—1+ce™?

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

Ldsolve(diff(y(t),t)=-y(t)+t,y(t), singsol=all)

yt) =t—1+e g

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 16

LDSolve [y' [t]==-y[t]l+t,y[t],t,IncludeSingularSolutions -> True]

y(t) > t+cet—1
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6.6 problem 1.2-1 (f)

6.6.1 Solving as linearode . . . . .. ... ... ... ... ... 164
6.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. 166]
6.6.3 Solvingasexactode ... ... .................. 170
6.6.4 Maple step by step solution . . . .. ... ... ... .. .... 175

Internal problem ID [2472]
Internal file name [OUTPUT/1964_Sunday_June_05_2022_02_41_14_AM_71309339/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (f).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y't + 2y = sin (¢)

6.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(t)y = q(t)

Where here
2
t)=—
p(t) ;
sin (¢
q(t) = t( )
Hence the ode is
2y  sin(t)
/ _— =
vty ¢

164



The integrating factor u is

The ode becomes

Integrating gives

d(t?y) = (tsin(t)) d¢

ty = / tsin (t) dt

t?y = —tcos (t) +sin (t) + ¢

Dividing both sides by the integrating factor p = 2 results in

which simplifies to

Summary

y_

—tcos(t) +sin(t) ¢
B 2 e

)= —tcos (t) +sin (t) + ¢

t2

The solution(s) found are the following

y:

—tcos (t) +sin (t) + ¢
12
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Figure 46: Slope field plot

Verification of solutions

—tcos(t) +sin (t) + ¢
12

y =
Verified OK.
6.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,  —2y+sin(?)
Y=
¥ =w(t,y)

The condition of Lie symmetry is the linearized PDE given by
me+w(ny — &) — w2£y —w —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0

1

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

t_dy_ g

£ (1)

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
S is found from
1
S = / —dy
n
1
t2
Which results in
S =ty

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St + w(t,y)S, @)
dR R+ w(t,y)R,

Where in the above Ry, Ry, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

w(t,y) = —2y +tsin (t)
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = 2yt
S, =t

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as
dR
We now need to express the RHS as function of R only. This is done by solving for ¢,y

= tsin (¢) (2A)

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

= Rsin (R)

It converts an ode, no matter how complicated it is, to one that can be solved by
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ODE in canonical coordinates
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Original ode in ¢,y coordinates
dy

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
To complete the solution, we just need to transform (4) back to ¢,y coordinates. This

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Which simplifies to

results in
Which gives
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ﬁ

—tcos (t) +sin(t) + 1
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Figure 47: Slope field plot
Verification of solutions
—tcos(t) +sin (t) + ¢
y = v
Verified OK.
6.6.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 04d
Yy _
Oox + oydr 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

(t)dy = (—2y +sin (¢)) d¢
(2y —sin (¢))dt+(¢t)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(t,y) = 2y — sin (t)
N(t,y) =t

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
T — 2 (9y —si
= 5y —sin(®)
=2
And
ON 0
ot o)
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Bt )
find an integrating factor to make it exact. Let

A L(oM _oN
N\ 0y ot

((2) = (@)

Since %i; +# 9N then the ODE is not exact. Since the ODE is not exact, we will try to

S S

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdt
The result of integrating gives
b= eln(t)
=t

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
= t(2y — sin (t))
= (2y —sin(2))t

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N% =0
(2y—sim(®) )+ (2) 2 =0
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The following equations are now set up to solve for the function ¢(¢,y)

0 S
2w 1)
0 —
8_25 -N (2)
Integrating (1) w.r.t. ¢ gives
0p .. [~
/Edt = /Mdt
% dt = / (2y —sin (¢)) tdt
¢ = t*y — sin (t) + tcos (t) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

¢

=+ f 4
9y~ ¢TI0 (4)
But equation (2) says that g—z = t2. Therefore equation (4) becomes
=1+ f'(y) (5)
Solving equation (5) for f'(y) gives
f'y)=0
Therefore
fly)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = t*y — sin (¢) + tcos (t) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

¢, = t*y — sin () + t cos (t)
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—tcos (t) +sin (t) + ¢
12

The solution(s) found are the following

The solution becomes

Summary

1)
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Verification of solutions
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6.6.4 Maple step by step solution

Let’s solve
y't + 2y = sin (¢)
° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
y =2 4 2@

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+ % =20

° The ODE is linear; multiply by an integrating factor u(t)
p) (v + %) = Hop
o Assume the lhs of the ODE is the total derivative 4 (u(t) y)
ut) (v + %) =y +ut)y
e  Isolate y/(t)
t

w(t) =22
° Solve to find the integrating factor
pu(t) =t

° Integrate both sides with respect to ¢

[ (L (u(t)y)) dt = [ 25O g¢ 4
° Evaluate the integral on the lhs

p)y=[ u(t)sin(t) iin(t) dt + ¢,

° Solve for y
L P
Y="w
e  Substitute u(t) = t?
y= ftsinsttZ)dt—i-cl
° Evaluate the integrals on the rhs
y = —tcos(t);l;sin(t)-l—q
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve(t*diff(y(t),t)+2*y(t)=sin(t),y(t), singsol=all)

y(t) = = cos (t)t —;sin t)+a

v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 19

LDSolve[t*y'[t]+2*y[t]==Sin[t],y[t],t,IncludeSingularSolutions -> True]

sin(t) — tcos(t) + ¢;
12

y(t) —
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6.7 problem 1.2-1 (g)

6.7.1 Solving as linearode . . . . .. ... ... ... ... 177
6.7.2 Solving as first order ode lie symmetry lookup ode . . ... .. 179
6.7.3 Solvingasexactode . .. ... ... .. ... ... ...... 183]
6.7.4 Maple step by step solution . . . . ... ... ... ... ... 187

Internal problem ID [2473]
Internal file name [OUTPUT/1965_Sunday_June_05_2022_02_41_16_AM_55837158/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (g).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' — ytan (t) = sec (t)

6.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
¥ +p(t)y = q(?)

Where here

Hence the ode is
y' — ytan (t) = sec (¢)

The integrating factor u is
L= ef—tan(t)dt

= cos (t)
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(1)

— [a
t+c

() (sec (¢))
(cos (¢) y) = (cos (t)) (sec (¢))
d(cos (t)y) = dt
sec (t) (t+ c1)
sec (t) (t+ 1)

sec (t) t + ¢ sec (t)

(1y)
cos (t)y
cos (t)y

Y
Y

dt
y:

dt
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Dividing both sides by the integrating factor u = cos (¢) results in

The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to

Summary
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Figure 49: Slope field plot
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Verification of solutions

y=sec(t)(t+c1)
Verified OK.

6.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = ytan (t) + sec (t)
Y =w(ty)

The condition of Lie symmetry is the linearized PDE given by
e + w(ny - é.t) - w2§y —wi — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(ty) =0
1
t,y) = —— Al
n(t,y) cos (1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

W _gs

£~ (1)

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
_ 1

i
cos(t)

S =cos(t)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Si+w(t,y)Sy
dR ~ R, +w(t,y)R,

(2)

Where in the above Ry, R,, S;, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

w(t,y) = ytan (t) + sec (t)

Evaluating all the partial derivatives gives

R =1
R,=0

Sy = —sin(t)y
Sy = cos (t)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

1 (2A)

1

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+ ¢ (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

yeos(t) =t+c
Which simplifies to
ycos(t) =t+c

Which gives

. t+01
y_cos(t)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
coordinates
transformation

Original ode in ¢,y coordinates (R, S)

ODE in canonical coordinates
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Summary

The solution(s) found are the following

Y

t+c
cos (t)
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Verification of solutions

Verified OK.
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Figure 50: Slope field plot

- t+ C1
"~ cos(t)

6.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M@w+N@wﬁ%=0

(A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

Hence

d

0p  Opdy _
or  Oydx
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

dy = (y tan (t) + sec (t)) dt
(—ytan (t) —sec(t))dt+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(t,y) = —ytan (t) — sec (t)
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
Py a—y(—ytan (t) —sec(t))
= —tan (t)
And
ON 0
o0 o)
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Since %i; # %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L_L(oM _oN
N\ oy ot

= 1((—tan (¢)) — (0))
= — tan (¢)
Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is
_ ol Adt

—e J —tan(¢t) d¢

I

The result of integrating gives

= eln(cos(t))
= cos (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= cos (t) (—y tan (t) — sec (t))
=—sin(t)y—1

And

= cos (t) (1)
= cos (t)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
. _dy
M+N-—==0
HIRT
d
(—sin () y — 1) + (cos (¢)) d—?; =0

The following equations are now set up to solve for the function ¢(¢,y)

o
g_t_M (1)
¢ _~
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Integrating (1) w.r.t. ¢ gives
0 41 — / Mdt
ot

99 .. _ :
adt—/—sm(t)y—ldt

¢=—t+cos(t)y+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

o = cos(t)+ 10 (@)
But equation (2) says that g—i = cos (t). Therefore equation (4) becomes
cos (£) = cos (t) + f'(y) (5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢p=—t+cos(t)y+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1=—t+cos(t)y

The solution becomes
_ t+c
~ cos ()
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The solution(s) found are the following
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Figure 51: Slope field plot
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Highest derivative means the order of the ODE is 1

y' — ytan (t) = sec (t)
Isolate the derivative

6.7.4 Maple step by step solution
Let’s solve

Verification of solutions
Verified OK.



y' = ytan (t) + sec (¢)

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' — ytan (t) = sec(t)

The ODE is linear; multiply by an integrating factor u(t)
u(t) (y' — ytan (£)) = p(t) sec (£)

Assume the lhs of the ODE is the total derivative 4 (u(t) y)
u(t) (v —ytan (8)) = w'() y + u(t) v/

Isolate p'(t)

p'(t) = —p(t) tan (t)

Solve to find the integrating factor

pu(t) = cos (t)

Integrate both sides with respect to ¢

J (&u®)y) dt = [ p(t)sec(t) dt +

Evaluate the integral on the lhs

u(t)y = [ p(t)sec (t) dt +

Solve for y
[ p(t) sec(t)dt+cy
Y= "

Substitute p(t) = cos (t)

[ 'sec(t) cos(t)dt+c1
y= cos(t)

Evaluate the integrals on the rhs

y= foﬁ%
Simplify

y=sec(t) (t+c1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

Ldsolve(diff(y(t),t)=y(t)*tan(t)+sec(t),y(t), singsol=all)

y(t) =sec(t) (t+ ¢1)

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 12

LDSolve[y'[t]==y[t]*Tan[t]+Sec[t],y[t],t,IncludeSingularSolutions -> True]

y(t) = (t + 1) sec(t)
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6.8 problem 1.2-1 (h)

6.8.1 Solving as linearode . . . . . ... ... ... ... ... 190
6.8.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 1921
6.8.3 Solvingasexactode .. ... .. ... .. ............
6.8.4 Maple step by step solution . . . .. .. ... ... ... ... 201

Internal problem ID [2474]
Internal file name [OUTPUT/1966_Sunday_June_05_2022_02_41_19_AM_18769874/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (h).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

-2 =t+1
y 2+1 +

6.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(t)y = q(t)

Where here
2t
)= ————
p(t) 2+1
qt) =t+1
Hence the ode is
2ty
' — _ =t+1
Y~ +1 +
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The integrating factor u is

The ode becomes

Integrating gives

Y t+1
= = dt
?2+1 /t2—|—1
In (t*+1
tQZ-/i—lz n( 2+ )—i—arctan(t)—i-cl

1

i1 results in

Dividing both sides by the integrating factor u =

y=(t+1) (ln(ﬁT—i—l) + arctan (t)) + e (t*+1)

which simplifies to

y=(t+1) (WT+1) + arctan (t) + cl)

Summary
The solution(s) found are the following

y=(*+1) (WT—FD + arctan (t) + cl) (1)
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Figure 52: Slope field plot

Verification of solutions

y=(t?+1) (WT—i_l) + arctan (t) + cl)

Verified OK.

6.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, P2yt +t+1
V= 241
Yy =w(t,y)

The condition of Lie symmetry is the linearized PDE given by
m+ w(ny — &) — w2£y —wf —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

n

1
_/t2+1dy

S is found from

Which results in

Y
S=-"—
t2+1

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S + w(t,y)S, @)
dR R+ w(t,y)R,

Where in the above R, Ry, St, S, are all partial derivatives and w(t, y) is the right hand
side of the original ode given by

P42t +t+1

t
Evaluating all the partial derivatives gives
Rt - 1
R, =0
%t
Co@+)
1
Sy =——
Y241

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as t+1

dR_ £2+1 (24)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _ R+1
dR  R2+1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

In(R%+1)

S(R) = ==

+ arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

y  In(@#*+1)
2+1 2

+ arctan (t) + ¢

Which simplifies to

y  In(@#*+1)
2+1 2

+ arctan (t) + ¢;

Which gives

) = (t* + 1) (In (t* + 1) + 2arctan (t) + 2¢;)
B 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ) .
ODE in canonical coordinates

(R,S)

Original ode in ¢,y coordinates coordinates
transformation

dy _ 4?42yttt dS _ R+l

t t2+1 dR = R2+1

AR oo b
AA T v v __w_>
AR o v
AR oo b
AA T o v v
AR o v
AR T o>
AR o o v
AR o o>
AR oo b

e i i
=

P e e et et e
NV RS

Mre S

/’/%/’/v/v/jf//v
ValPallat > afntadadad
ARAF o oo b
AA T T v v
AR T v o>
AR oo b
AR oo b
AR T v o>
AR T v o>
AR T v _v_v
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i
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Summary
The solution(s) found are the following

Y= (t2+1)(In(® +1) ;— 2arctan (t) + 2¢) (1)
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Figure 53: Slope field plot

Verification of solutions

_ (#+1)(In(#* + 1) 4 2arctan () + 2c;)
B 2

Verified OK.

6.8.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,y) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
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Hence

99 , dpdy _

i st A B
Oor Oydx (B)
Comparing (A,B) shows that
99
M
Oz
2 _
Ay
But since %gy = ;; g’x then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
26 _ 8¢
Ozdy ~ Oydx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

is satisfied. If this condition is not satisfied then this method will not work

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

2
dy=< ty +t+1) dt

t2+1
2ty
(25 Yaray=o "
Comparing (1A) and (2A) shows that
2ty
M(t,y) = — -1
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Ot

Using result found above gives

8M_8( 2ty t—l)

by  Oy\ 2+1
ot
2+1
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And

ON
5 = (1)

—0

Since aM £ N %> then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

Ao L(0M _oN
N\ 9y ot

-((-41)-)
___ 2
241

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdt
= ef _?2% dt
The result of integrating gives
p=e" In(t2+1)
1
241

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

1 2ty
= — —t—1
il rer Y

—1-3 -+ (—2y—1)t
(t2+1)°

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

~dy
M+N-=2=0
MR
—1-833 -2+ (—2y— 1)t N 1 \dy _
(t2 + 1)2 t2 +1 dt
The following equations are now set up to solve for the function ¢(¢,y)
op —
T —-M 1
ot (1)
0 —
T —N 2
o &)

Integrating (1) w.r.t. ¢t gives
99 4t — / Mdt
ot

—1 — 3 — ¢2 — D) —
0 4, _ / 18—+ (=2 - 1)t .

ot (2 +1)°
2
6=t~ B arctan (1) + ) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y

Taking derivative of equation (3) w.r.t y gives

9% _ 1 | pw
y e+1 Y

(4)

a¢ = Therefore equation (4) becomes

But equation (2) says that 5 = 5.

1 1 ,
pri sl W (5)

Solving equation (5) for f'(y) gives

Therefore
fly)=a

199



Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
y In(t* +1)

o 5 — arctan (t) + ¢;

¢ =

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

Y In (82 +1)
2+1 2

¢ = — arctan (?)

Summary
The solution(s) found are the following

y  In(#*+1)
t2+1 2
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Figure 54: Slope field plot

Verification of solutions

y In(t? +1)

P 5 — arctan (t) =

Verified OK.

200



6.8.4 Maple step by step solution

Let’s solve
y - tgfl =t+1

° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
Yy = tgfl +t41

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Yy - tgfl =t+1

° The ODE is linear; multiply by an integrating factor u(t)
pl) (= 25) = u(t) (t+ 1)

o Assume the lhs of the ODE is the total derivative 4 (u(t) y)
p) (v — 25) = W)y +u)y

e  Isolate p/(t)

W) = -

° Solve to find the integrating factor

wt) =z
° Integrate both sides with respect to ¢
J(L(uit)y)dt=[pul)E+1)di+a

° Evaluate the integral on the lhs
pt)y = [p@) (t+1)dt+c

° Solve for y
J p@)(@+1)dt+cr
Y="u
o Substitute u(t) = &5
y=@+1) ([ Fhdt+c)
° Evaluate the integrals on the rhs

y=(>+1) (WTH) + arctan (t) + cl>
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

Ldsolve(diff(y(t) ,£)=2%t/ (t~2+1) %y (t)+t+1,y(t), singsol=all) J

y(t) = <ln(tQT+1) + arctan (t) + cl) (t*+1)

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 26

LDSolve[y'[t]==2*t/(t*2+1)*y[t]+t+1,y[t],t,IncludeSingularSolutions -> Truel J

yt) = (B +1) (arctan(t) + %log (*+1) + cl)
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6.9 problem 1.2-1 (i)

6.9.1 Solving as linearode . . . . . ... ... ... ... ... 203]
6.9.2 Solving as first order ode lie symmetry lookup ode . . ... .. 205]
6.9.3 Solvingasexactode . .. ... .................. 209
6.9.4 Maple step by step solution . . . . . ... ... ... .. ... 213

Internal problem ID [2475]
Internal file name [OUTPUT/1967_Sunday_June_05_2022_02_41_21_AM_12422856/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-1, page 12

Problem number: 1.2-1 (i).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y — ytan (t) = sec (t)®

6.9.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is
¥ +p(t)y =q(t)
Where here
p(t) = —tan(t)
q(t) = sec (t)°
Hence the ode is
y — ytan (t) = sec (t)°

The integrating factor u is

L= ef—tan(t)dt

= cos (t)

203



The ode becomes

(1Y) = (1) (sec (1)°)
(cos (t) y) = (cos (t)) (sec (t)3)

dt

= sec (t)? dt

d(cos () y)

Integrating gives

/ sec (t)? dt

cos (t)y =tan () + ¢

cos (t)y

Dividing both sides by the integrating factor u = cos (¢) results in

sec (t) tan (t) + c; sec (t)

y:

which simplifies to

sec (t) (tan (t) + ¢1)

'y:

Summary
The solution(s) found are the following

(1)

y = sec (t) (tan (t) + ¢1)
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Figure 55: Slope field plot
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Verification of solutions

y = sec (t) (tan (t) + ¢1)
Verified OK.

6.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y' = ytan (t) + sec (¢)°
Yy =w(ty)
The condition of Lie symmetry is the linearized PDE given by
e+ w(ny — &) — wéy —wi€ —wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 49: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(ty) =0
1
t,y) = —— Al
n(t,y) cos (1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

W _gs

£~ (1)

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
_ 1

i
cos(t)

S =cos(t)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ Si+w(t,y)Sy
dR ~ R, +w(t,y)R,

(2)

Where in the above Ry, R,, S;, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

w(t,y) = ytan (t) + sec (t)>

Evaluating all the partial derivatives gives

R =1
R,=0

Sy = —sin(t)y
Sy = cos (t)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 2
qR =S¢ (t) (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
4R = 5¢¢ (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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ytan (t) + sec (t)°

dy _

Original ode in ¢,y coordinates
dt

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
To complete the solution, we just need to transform (4) back to ¢,y coordinates. This

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Which simplifies to

results in
Which gives

?????? I NS S S L
PR RRR RN RNK KRR AP
LR RSN S

A N

> > > > b >

AR AT T T
A2 AR
SR BN N

1)

cos (t)

tan (t) + ¢
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The solution(s) found are the following

Summary
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Figure 56: Slope field plot

Verification of solutions
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Verified OK.

6.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y)+ N(@,y) 2 = 0
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

dy = (ytan (¢) +sec(t)*) dt
(—ytan (t) —sec ()*) dt+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(t,y) = —ytan (t) — sec (t)®
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0 3
By 8y( ytan (t) — sec (¢)°)
= — tan (¢)
And
ON 0
o0 o)

=0
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Since %i; # %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

L_L(oM _oN
N\ oy ot

= 1((—tan (¢)) — (0))
= — tan (¢)
Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is
_ ol Adt

—e J —tan(¢t) d¢

I

The result of integrating gives

= eln(cos(t))
= cos (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= cos (t) (—ytan (¢) — sec (t)B)
= —sin (t) y — sec (t)*

And

= cos (t) (1)
= cos (t)
Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
. _dy
M+N-—==0
HRT
. 2 dy
(—sin (¢) y — sec (t)7) + (cos (¢)) i 0

The following equations are now set up to solve for the function ¢(¢,y)

o
g_t_M (1)
¢ _~
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Integrating (1) w.r.t. ¢ gives
9 41 — / M dt
ot

%dt = /—sin (t)y — sec (¢)*dt

¢ = —tan (¢) +cos (t) y + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

o = cos(t)+ 10 (@)
But equation (2) says that g—i = cos (t). Therefore equation (4) becomes
cos (£) = cos (t) + f'(y) (5)
Solving equation (5) for f’(y) gives

fly)=0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢=—tan(t) +cos(t)y+c1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c; = —tan (t) + cos (t)y
The solution becomes

_ tan t)+ca
cos (t)
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(1)

tan (t) + ¢;
cos (t)

y:
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The solution(s) found are the following

Summary
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Figure 57: Slope field plot
tan (t) + ¢
cos (t)
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Highest derivative means the order of the ODE is 1

y — ytan (t) = sec (t)®
Isolate the derivative

6.9.4 Maple step by step solution
Let’s solve

Verification of solutions
Verified OK.



y = ytan (t) + sec (¢)°

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y — ytan (t) = sec (t)°

The ODE is linear; multiply by an integrating factor u(t)
u(t) (v — ytan (¢)) = u(t) sec (1)’

Assume the lhs of the ODE is the total derivative 4 (u(t) y)
u(t) (v —ytan (8)) = w'() y + u(t) v/

Isolate p'(t)

p'(t) = —p(t) tan (t)

Solve to find the integrating factor

pu(t) = cos (¢)

Integrate both sides with respect to ¢

(L (ut)y)) dt = [ p(t)sec( ) dt + ¢
Evaluate the integral on the lhs

p(t)y = [ u(t)sec )2 dt + ¢

Solve for y

[ w(t) sec(t)3dt4-c1
O

Substitute p(t) = cos (t)

[ sec(t)? cos(t)dt4c
y= cos(t)

Evaluate the integrals on the rhs

__ tan(t)+
y= a‘cos(t)c1

Simplify
y = sec (t) (tan (t) + ¢1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(t),t)=y(t)*tan(t)+sec(t)“3,y(t), singsol=all) J

y(t) = sec (t) (tan (t) + ¢1)

v/ Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 13

LDSolve[y'[t]==y[t]*Tan[t]+Sec[t]“3,y[t],t,IncludeSingularSolutions -> True] J

y(t) — sec(t)(tan(t) + c1)
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Problem 1.2-2, page 12

problem 1.2-2 (&) . . . . . . . ...
problem 1.2-2 (b) . . . . . ...
problem 1.2-2 (¢) . . . . . . ...
problem 1.2-2 (d) . . . . . . . ...
problem 1.2-2 (€) . . . . . . . . e
problem 1.2-2 (f) . . .. . ... ...
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7.1 problem 1.2-2 (a)

7.1.1 Existence and uniqueness analysis. . . . . . ... ... ... .. 217
7.1.2 Solving as quadratureode . . . . . . ... ... ... ... ... 218
7.1.3 Maple step by step solution . . . . . ... ... ... ... .. 219

Internal problem ID [2476]
Internal file name [OUTPUT/1968_Sunday_June_05_2022_02_41_23_AM_85041395/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-2, page 12

Problem number: 1.2-2 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

7.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
p(t) = -1
q(t) =0
Hence the ode is
y—y=0

The domain of p(t) = —1 is
{—o0 <t < o0}

And the point ty = 0 is inside this domain. Hence solution exists and is unique.
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7.1.2 Solving as quadrature ode

Integrating both sides gives

1
/—dy:t-l—cl
Y
In(y)=t+a
yzet-‘rcl
yzclet

Initial conditions are used to solve for c;. Substituting ¢ = 0 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=Cl

Cl=2

Substituting c¢; found above in the general solution gives

Summary

y==2e

The solution(s) found are the following
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(a) Solution plot
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(b) Slope field plot



Verification of solutions

y=2¢e
Verified OK.

7.1.3 Maple step by step solution

Let’s solve

Y —y=0,49(0) = 2]
) Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
¥ 1

Y

° Integrate both sides with respect to ¢
JLdt= [1dt+c

° Evaluate integral
In(y)=t+c

. Solve for y
y — et+C1

o Use initial condition y(0) = 2

2=e%

° Solve for ¢;
¢ =1n(2)

° Substitute ¢; = In (2) into general solution and simplify
y=2et

° Solution to the IVP
y=2¢'
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 8

Ldsolve([diff(y(t),t)=y(t),y(0) = 2],y(t), singsol=all)

y(t) = 2¢€*

v/ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 10

LDSolve[{y'[t]==y[t],y[0]==2},y[t],t,IncludeSingularSolutions -> Truel

y(t) — 2€
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7.2 problem 1.2-2 (b)

7.2.1 Existence and uniqueness analysis. . . . . .. ... ... .... 227
7.2.2 Solving as quadratureode . . . . . . ... ... oL 2272
7.2.3 Maple step by step solution . . . . ... ... ... ... .. ..

Internal problem ID [2477]
Internal file name [OUTPUT/1969_Sunday_June_05_2022_02_41_26_AM_44077002/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-2, page 12

Problem number: 1.2-2 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

y —2y=0

With initial conditions
[y(In (3)) = 3]
7.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
p(t) = =2
q(t) =0
Hence the ode is
Yy —2y=0

The domain of p(t) = —2 is
{—o0 <t < o0}

And the point ¢, = In (3) is inside this domain. Hence solution exists and is unique.
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7.2.2 Solving as quadrature ode

Integrating both sides gives

1

—dy= [ dt
2y v /
In

_2(3/) =t+c

Raising both side to exponential gives

\/g — et+01
Which simplifies to
\/37 = Czet

Initial conditions are used to solve for c. Substituting ¢ = In (3) and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3=9c

V3

.
Y773
Summary
The solution(s) found are the following
o2t
= 1
y=-3 1)
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(a) Solution plot

Verification of solutions

Verified OK.

7.2.3

Maple step by step solution

Let’s solve

[y’ — 2y =0,y(In (3)) = 3]
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
¥ —9
Yy

1007

801

60

404

20

D e e e e

NN N SN T e e s s s s s
NN N SN SN M e A s e s s e
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° Integrate both sides with respect to ¢

JLdt = [2dt+c,

° Evaluate integral
In(y) =2t+¢;

° Solve for y
y = et
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) Use initial condition y(In (3)) =3
3= e2 In(3)+c1

° Solve for ¢;
Cl = — In (3)
. Substitute ¢; = —In (3) into general solution and simplify
e2t

3
° Solution to the IVP

e2t

Yy=-35

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

kdsolve([diff(y(t),t)=2*y(t),y(1n(3)) = 3],y(t), singsol=all) J

62t
) = —
y() 3

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 14

‘DSolve[{y'[t]==2*y[t],y[Log[B]]==3},y[t],t,IncludeSingularSolutions -> True] ‘

e2t

y(t) — 3
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7.3 problem 1.2-2 (c)

7.3.1 Existence and uniqueness analysis. . . . . ... ... .. .... 225
7.3.2 Solving aslinearode . . . . . .. . ... ... ... 226
7.3.3 Solving as homogeneousTypeD2ode . ... ... ... ..... 228]
7.3.4 Solving as first order ode lie symmetry lookup ode . . ... .. 229]
7.3.5 Solvingasexactode . .. .. ... ... ... .. ... ..... 234
7.3.6 Maple step by step solution . . . . . .. ... ... ... .. .. 238

Internal problem ID [2478]
Internal file name [OUTPUT/1970_Sunday_June_05_2022_02_41_28_AM_89034612/index. tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-2, page 12

Problem number: 1.2-2 (c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

/

yt—y:t3

With initial conditions
[y(1) = -2

7.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
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Hence the ode is

! 4 2
A
Y7
The domain of p(t) = —1 is
{t<0VvO<t}

And the point £, = 1 is inside this domain. The domain of ¢(t) = ¢? is
{—00 <t < o0}
And the point ty = 1 is also inside this domain. Hence solution exists and is unique.

7.3.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

'u:ef—%dt

The ode becomes

d(y)==tdt
t
Integrating gives

y:/}&

t

y t?

¢ = 9 +Cl

Dividing both sides by the integrating factor u = % results in

13
y=5t'+at
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Initial conditions are used to solve for c;. Substituting ¢ = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.

2154‘Q

.
177

Substituting c; found above in the general solution gives

Summary

found are the following

The solution(s)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.
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7.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(t) t on the above ode results in new ode in ()

(W't +ul®)t —ult)t =1t

u(t)z/t dt

Integrating both sides gives

£2
=35 +co
Therefore the solution y is
Yy =ut
£2
= t(a + 02)
Initial conditions are used to solve for c;. Substituting ¢ = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.

1

—2=§‘|‘C2
o 2
27 79

t(t? — 5)
V="
Summary
The solution(s) found are the following
tt* -5
y="C"9 (1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

_t(t* - 5)

Verified OK.

7.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y:t’+y
t
Y =w(t,y)

The condition of Lie symmetry is the linearized PDE given by

e+ w(ny — &) — w2§y —wi§ —wyn =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 54: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0
n(t,y) =t

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=t

S is found from

dy

/
/

&+ | =3

Which results in

s=Y
t

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS o St+W(t,y)Sy

dR ~ R, +w(t,y)R, @)

Where in the above R, Ry, St, S, are all partial derivatives and w(t, y) is the right hand
side of the original ode given by

t*+y
Evaluating all the partial derivatives gives
Rt = ].
=0
_ Y
1
Sy, = —
Yot

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

a5 _

dR
We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

t (2A)

R
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It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
gives

(4)

='§‘+Cl

S(R)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This

results in

y
i 2 ta

Which simplifies to

t2
='§‘+Q

Y
t

Which gives

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Initial conditions are used to solve for c;. Substituting ¢ = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.

2154‘Q

.
177

Substituting c; found above in the general solution gives

Summary

found are the following

)

The solution(s

1)
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A e e e N N
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7
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20
15

20
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15
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2.5

35

25

15

0.5

(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.
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7.3.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

(t)dy = (¢ +y) dt
(=t* —y)dt+(t)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(tay) :_t3_y
N(t,y) =t
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Ot
Using result found above gives
oM 0 3
E 3y( t*—y)
=-1
And
ON 0
ot o
=1

Since %i: %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
N (8_11 - W)
= 2(-1) - (1)
2
—3

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdt
_ o f-2at
The result of integrating gives
= e—21n(t)
1
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
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And

2|
[

=
=

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

~—dy
M+N =0
TV

(F=)+ () =0

The following equations are now set up to solve for the function ¢(¢,y)

0p —
¢ _~

Integrating (1) w.r.t. ¢ gives

o6 . [—
E&-/M&

3
99 4 — /t Yat

ot t2

—t3+ 2y

0="%

+ /() (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

% _14rw (4)
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Solving equation (5) for f'(y) gives

fly)=0

Therefore

fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
-t 42y

¢ 2t

+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

o = —t3 + 2y
YT o
The solution becomes
_ t(t* 4+ 2c1)
2
Initial conditions are used to solve for c;. Substituting ¢ = 1 and y = —2 in the above

solution gives an equation to solve for the constant of integration.

1
—2:§+Cl
o =2
17

Substituting c¢; found above in the general solution gives

t(t2 —5)

y: 2

Summary
The solution(s) found are the following

t(t2 —5)
— (1)

y:
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(a) Solution plot (b) Slope field plot
Verification of solutions
_ t(t* - 5)
YT
Verified OK.
7.3.6 Maple step by step solution
Let’s solve
lyt—y=1ty(1) =2
° Highest derivative means the order of the ODE is 1
yl
° Isolate the derivative
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
yl _Yy _ t2
t

° The ODE is linear; multiply by an integrating factor u(t)

u(t) (v —4) = p(t) 2
o Assume the lhs of the ODE is the total derivative 2 (u(t)y)

ut) (=4 =pw(@t)y+ p)y

238



Isolate u'(t)
p(t) = -0
t

Solve to find the integrating factor

pu(t) =
Integrate both sides with respect to ¢

[ (L(u(t)y)) dt = [ p(t) 2dt + ¢
Evaluate the integral on the lhs

pt)y = [ p(t)t2dt +

Solve for y
_ Jp@®t*dtte
V="

Substitute u(t) = %
y=t([tdt+c1)

Evaluate the integrals on the rhs
y= t(% + cl>

Simplify

_ t(t242c1)
- 2

Use initial condition y(1) = —2
—2=3+a

Solve for ¢;

_ _5
Cl——§

Substitute ¢c; = —g into general solution and simplify

2_5
y = t(t2 )

Solution to the IVP

__ t(t2-5)
R
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

Ldsolve([t*diff(y(t),t)=y(t)+t“3,y(1) = -2],y(t), singsol=all) J

v Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 27

LDSolve[{y'[t]==y[t]+t‘3,y[1]==—2},y[t],t,IncludeSingularSolutions -> Truel J

y(t) = —t> — 3t — 6t + 14! — 6
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7.4 problem 1.2-2 (d)

7.4.1 Existence and uniqueness analysis. . . . . .. ... ... .... 247]
7.4.2 Solving aslinearode . . . . . ... ... ... ... 242
7.4.3 Solving as first order ode lie symmetry lookup ode . . . .. .. 247
74.4 Solvingasexactode . . ... .. .. ... . ... .. ...... 248
7.4.5 Maple step by step solution . . . . . ... ... ... 252

Internal problem ID [2479]
Internal file name [OUTPUT/1971_Sunday_June_05_2022_02_41_30_AM_86709491/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-2, page 12

Problem number: 1.2-2 (d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y + ytan (t) = sec (t)

With initial conditions
[y(0) = 0]

7.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
Y +p(t)y = q(t)
Where here

p(t) = tan ()
q(t) = sec (t)
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Hence the ode is
Y + ytan (t) = sec (t)

The domain of p(t) = tan (¢) is

{t < %w +7_Z83V %w +7 Z83 < t}

And the point ¢y = 0 is inside this domain. The domain of ¢(t) = sec (¢) is
1 1
{t < §7r +m Z83V §7r +7 Z83 < t}

And the point £y = 0 is also inside this domain. Hence solution exists and is unique.

7.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

p=e J tan(t)dt
1
~ cos (t)
Which simplifies to
u = sec (t)

The ode becomes
< (uy) = (1) (sec (1)

< (sec (1) ) = (sec (1)) (sec (1)
d(sec (t) y) = sec (t)° dt

Integrating gives

sec(t)y = / sec (t)? dt

sec(t)y =tan (t) + ¢
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Dividing both sides by the integrating factor u = sec () results in
y = cos (t) tan (t) + ¢; cos (t)
which simplifies to
y = ¢y cos (t) + sin (2)

Initial conditions are used to solve for c;. Substituting ¢ = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=Cl

C1 = 0
Substituting ¢; found above in the general solution gives

y = sin (t)

Summary
The solution(s) found are the following

y = sin (¢) (1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (¢)

Verified OK.
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7.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = —ytan () + sec (t)

Y =w(t,y)

The condition of Lie symmetry is the linearized PDE given by

Tt +w(77y - gt) - w2§y —wi€ — Wyt = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 57: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

§(t,y) =0
n(t,y) = cos (t) (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (t,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt  dy
£

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
_ 1

B / cos (t) @y

_ Y
cos (t)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S is found from

Which results in

as _ Si+w(t,y)Sy @)
dR R, +uw(t,y)R,
Where in the above Ry, R,, S:, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

w(t,y) = —ytan (t) + sec (¢)

Evaluating all the partial derivatives gives

R, =1

R,=0

Sy = sec (t) tan (t) y
Sy = sec (1)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 2
JR = sec (t) (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
4R = S¢¢ (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =tan(R) + 1 (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

sec (t)y = tan (t) + ¢;
Which simplifies to
sec (t)y = tan (t) + ¢;

Which gives

_ tan (t)+c
sec (t)

246



P

eSS

AN S D N NN
NRNRNRRNRNRNRR Y
NN
TR R R R RORRO R

ettt

e R O O N N S
NRNRRNRRNRNRNRY
CRNNRNNRRRY

AN N N N NN

e

AN S DN N NN

AR RN N N

ODE in canonical coordinates
(R, 9)

NRORRR R RN AR AR NN AR R R Y

SN NN SN NN N SN

L P ——S——
X

R [0t

AR R R R R R R

ERRRRRRR RN NN R R

AN e D N NN

ettt eS|

——— e

VM—ﬂﬂ/d/d/ﬂ/d/d/ﬂ/d/d/
B

— S

Canonical

coordinates
transformation

S

(t) + sec (t)

— v > T T T _7
D el d
VYt rrraAs
R P
——b—— o7 X
B e A B AN
£EPRRARARRY

A N e
fffff
2V R RS SN
ZA2FEEEEAN
AAAF AR AT
P B B
¥¥¥¥¥¥¥¥¥
et ot
R T e S e

TR T R R R R R R R

= —ytan

dy _

Original ode in t,y coordinates
dt

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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sin (t)
sin (¢)
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Initial conditions are used to solve for c;. Substituting ¢t = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.
Substituting ¢; found above in the general solution gives

The solution(s) found are the following

Summary
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(b) Slope field plot

sin (¢)
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¢(z,y) =0

y
dz

25

d
M(z,y) + N(z,y) 57 =0

15

(a) Solution plot

05
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0.21
0.1

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)

7.4.4 Solving as exact ode
ode. Taking derivative of ¢ w.r.t. z gives

To solve an ode of the form
Comparing (A,B) shows that

Verification of solutions
Verified OK.
Hence



But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)
Therefore
dy = (—ytan (t) + sec (t)) dt
(ytan (t) —sec(t))dt+dy =0 (2A)
Comparing (1A) and (2A) shows that
M(t,y) = ytan (t) — sec (¢)
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Ot
Using result found above gives
oM 0
By 8_y(y tan (t) — sec (t))
= tan (t)
And
ON 0
Bt o)

=0

Since %i; %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

am k(2 o)

" N\oy ot
= 1((tan (¢)) — (0))
= tan (?)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdt
— ¢/ tan(t)dt
The result of integrating gives
1= e~ n(eos®)
= sec (t)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= sec (t) (y tan (t) — sec (¢))
= sec (t)° (sin (t)y — 1)
And

= sec (t) (1)
= sec (t)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+ N% =0
(sec (t)? (sin (t) y — 1)) + (sec (£)) % =0

The following equations are now set up to solve for the function ¢(¢,y)

0p —
b _~
5y =N 2)

Integrating (1) w.r.t. ¢ gives
9 44 — / Mdt
ot
99 dt = /sec (t)? (sin (t) y — 1) dt

ot
¢ = sec(t) y — tan (t) + f(y) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
oy e () + f'(y) (4)

But equation (2) says that g—z = sec (t). Therefore equation (4) becomes
sec (t) = sec (t) + f'(y) (5)
Solving equation (5) for f'(y) gives
f'ly) =0
Therefore
fy)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ =sec(t)y —tan(t) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy constants into new constant c; gives the solution as

¢1 = sec (t) y — tan (¢)

The solution becomes
_ tan (t) +c
~ sec(t)

Initial conditions are used to solve for c¢;. Substituting ¢ = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0261

C = 0
Substituting c¢; found above in the general solution gives

y = sin (t)
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Summary
The solution(s) found are the following

y = sin (t) (1)

0.91
0.8
0.8
0.71

0.6

N,/

0.6

0.4 0.4
0.31
0.21 0.2

0.1

N s e SN, S e e N N N N
O N S S S OO R O NN NN
e e e e e e R N O SORSNOCNONONON N

S e N R N
4\
e S/
e G S
e T S
P e
T e

O rerer o e

e N R N RS
e J 7

11— S /]

(=}
f=1
W
—
wn
o
NS}
W
w
S
—_
[\S}

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (¢)
Verified OK.

7.4.5 Maple step by step solution

Let’s solve
[y’ +ytan (t) = sec(t),y(0) = 0]
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y' = —ytan (t) + sec (¢)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Yy + ytan (t) = sec(t)

° The ODE is linear; multiply by an integrating factor w(t)
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u(t) (y' + ytan (£)) = p(t) sec ()
Assume the Ihs of the ODE is the total derivative 2 (u(t)y)
p(t) (¥ +ytan (t) = p'(t) y + pt) ¥’
Isolate u'(t)

() = p(t) tan (£)

Solve to find the integrating factor
wt) = o

Integrate both sides with respect to ¢
J (&u®)y) dt = [ p(t)sec(t) dt +
Evaluate the integral on the lhs

w(t)y = [ u(t)sec () dt +cx

Solve for y

[ p(t) sec(t)dt+cy
y= u(t)
Substitute u(t) = @

y = cos (t) < f ii‘;gg dt + C1>
Evaluate the integrals on the rhs
y = cos (t) (tan () + ¢1)

Simplify

y = ¢y cos (t) + sin (¢)

Use initial condition y(0) =0
0=c

Solve for ¢;

=0

Substitute c; = 0 into general solution and simplify
y = sin (t)

Solution to the IVP

y = sin (¢)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 6

Ldsolve([diff(y(t),t)=-tan(t)*y(t)+sec(t),y(O) = 0],y(t), singsol=all) J

y(t) = sin (t)

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 7

LDSolve[{y'[t]==—Tan[t]*y[t]+Sec[t],y[0]==0},y[t],t,IncludeSingularSolutions ff True]

y(t) — sin(?)
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7.5 problem 1.2-2 (e)

7.5.1 Existence and uniqueness analysis . . . . . .. ... ... ....
7.5.2 Solving as separableode . . . . . . ... ... oL
7.5.3 Solvingaslinearode . . ... ... ... ... .......... 257
7.5.4 Solving as homogeneousTypeD2ode . ... ... ... ..... 250
7.5.5 Solving as homogeneousTypeMapleCode . . . . . .. ... ... 260
7.5.6 Solving as first order ode lie symmetry lookup ode . .. .. .. 263]
7.5.7 Solvingasexactode . ... ... ... ... ... ... ... 267
7.5.8 Maple step by step solution . . . . . ... ... ... ... 271l

Internal problem ID [2480)]
Internal file name [OUTPUT/1972_Sunday_June_05_2022_02_41_34_AM_36487731/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-2, page 12

Problem number: 1.2-2 (e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "homogeneousTypeMapleC", "first_ order__ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_separable]

With initial conditions
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7.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
2
)= ———
PO =331
q(t)=0
Hence the ode is
2y
! _ J—
¥=ir1!
The domain of p(t) = —t%l is

{t<-1v-1<t}
And the point ¢y = 0 is inside this domain. Hence solution exists and is unique.

7.5.2 Solving as separable ode

In canonical form the ODE is

y = F(t,y)
= f(t)g(y)
_ 2%
Tt+1

Where f(t) = t%l and g(y) = y. Integrating both sides gives
2

1
—dy=——dt
Y t+1

1 2
= [ 2
Y t+1
In(y)=2In(t+1)+ ¢
y= ten(t+1)+cl

= Cl(t + 1)2

Initial conditions are used to solve for ¢;. Substituting ¢t = 0 and y = 6 in the above
solution gives an equation to solve for the constant of integration.

6201
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6126

Substituting c¢; found above in the general solution gives

Summary
The solution(s) found are the following

Verification of solutions

90+

80

70

60+

507

401

30

20

104

y=6(t+1)°

y=6(t+1)°
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20

05

(a) Solution plot

Verified OK.

7.5.3 Solving as linear ode

15

>

YOS S e e add
YO e e e aad

VO VPO rrr

1 P e

25 3 0 1

(b) Slope field plot

y=6(t+1)°

Entering Linear first order ODE solver. The integrating factor y is

2
p=el “wd

_ 1
T (t+1)
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The ode becomes

4=
oM

o) =

Yy _.
(t+1)

Dividing both sides by the integrating factor u = ﬁz results in

Integrating gives

y=c(t+ 1)2

Initial conditions are used to solve for c;. Substituting ¢t = 0 and y = 6 in the above
solution gives an equation to solve for the constant of integration.

6=Cl

C1 = 6
Substituting c; found above in the general solution gives
y=6(t+1)°

Summary
The solution(s) found are the following

2
y="6(t+1) (1)
% ol (1111111117170 77777777
t11trr 1111777777777
oA 11111111 71717777777777
801 11111111111 717777772/77
A 1111111717177 777777/77
701 1111171771 777777770777
q4 11111177 7777777707777
601 1111717177777 777707777
R A I
77
y(1) s0q YO slirrr77777777 /77
111717777777 /077
401 s 117777777707 77777777
1177777777777 7777rr
301 3SH/ /7777 s
]/ 77777 s
201 YA/ 77 H
VP PP P
104 1 P e
0 05 1 15 2 25 3 0 1 2 3
t t
a) Solution plot b) Slope field plot
1% 1% p
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Verification of solutions

y=6(t+1)°
Verified OK.

7.5.4 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(t) t on the above ode results in new ode in u(t)

u(t)t

/ _— =
u' ()t + u(t) T4 1 0
In canonical form the ODE is
u = F(t,u)
= f(t)g(v)
_ u(t —1)
Ct(t+1)

Where f(t) = % and g(u) = u. Integrating both sides gives

1 t—1

1 t—1
/Edu:/t(tﬂ) dt
In(u)=2In(t+1)—In(t) + ¢

u= e2 In(t+1)—In(t)+c2

— 0262 In(t+1)—In(t)

Which simplifies to

u(t)zcz<t—|—2+%>

Therefore the solution y is
Yy =ut

1
=t62<t+2+¥)

Initial conditions are used to solve for c,;. Substituting ¢ = 0 and y = 6 in the above
solution gives an equation to solve for the constant of integration.

6202
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Cy = 6
Substituting c, found above in the general solution gives

y=6t"+12t+6

Summary
The solution(s) found are the following

y = 6t> + 12t +6 (1)

o0 ool 1111111110111 7717777

t1rtrrtir117177777777
oA 1111111177777 7777707
801 P11 1117117777 7777/77
A 1111111717177 777777/77
701 1111171711 717777777p0777
qoA 1111777777777 7
601 11111177777 777707777
Ny (Y Y,
I
»(2) so YO lrrrrrriiri s e
111717777777 077777777
401 sl 1177777777 0777777777
177777777 /7777777777
30 sH /7 /7777 s s
]/ 777777
201 YA/ 777
T
104 107 T
0 05 1 15 2 25 3 0 1 2 3

t t
(a) Solution plot (b) Slope field plot

Verification of solutions

y =6t +12t+6
Verified OK.

7.5.5 Solving as homogeneousTypeMapleC ode

Let Y = y+yo and X =t + zo then the above is transformed to new ode in Y (X)

dX (X) X+zo+1

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

Z'():—l

Yo =
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Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d 2Y(X)
axy X ="x
In canonical form, the ODE is
Y' =F(X,Y)
2Y
= 1
= 1)

An ode of the form Y’ = AJ\/‘;((:;((}}:)) is called homogeneous if the functions M (X,Y’) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = 2Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode

is homogeneous, it is converted to separable ODE using the substitution u = %, or
Y = uX. Hence
v _du
ax —ax Y
Applying the transformation Y = uX to the above ODE in (1) gives
du
—X =2
ax +u U
du _ u(X)
dX X
Or p ()
u
— (X)) = 22—
ax ) - =% =0
Or

<diXu(X)) X —u(X)=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

S
I

I
Ml 2 ™
>
S
£
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Where f(X) = + and g(u) = u. Integrating both sides gives

—du——dX

/s du—/—dX

In(u) =In(X)+c
u = eln(X)+62

= CQX
Now u in the above solution is replaced back by Y using u = % which results in the

solution
Y(X) = X%,

Using the solution for Y (X)
Y(X) = X%,

And replacing back terms in the above solution using

Y=y+uw
X=t+.’L'0
Or
Y=y
X=t-1
Then the solution in y becomes
2
y=(t+1)c

Initial conditions are used to solve for c,. Substituting ¢t = 0 and y = 6 in the above
solution gives an equation to solve for the constant of integration.

6=02

Cy = 6
Substituting c, found above in the general solution gives

y=6(t+1)>
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Summary
The solution(s) found are the following

2
y="6(t+1) (1)
90 o (1111111111077 777777
1111t 1117177777777
oA 11111111 7777777777/7
801 11111111111 717777772/77
A 11111111171 7777777/77
701 1111171171 717777777p0777
q4 111171177 7777777707777
601 1111171717777 7777207777
N Ny (Y,
7777
y(1) so YO s lrrrrriiiir s s
111717777777 077777777
407 s 17177777777 777777777
1717777777 /7777777777
30 3SH/ /777 s
J 77777777 s
20 2/ /S
gy >
10 -z~
0 05 1 15 2 25 3 0 1 2 3
t t
(a) Solution plot (b) Slope field plot

Verification of solutions

y = 6(t+1)°
Verified OK.

7.5.6 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yzﬁi
t+1
Y = w(t,y)

The condition of Lie symmetry is the linearized PDE given by

N+ w(ny — &) — w2§y —w —wyn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 60: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0

n(t,y) = (t+1)°

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

¢ _dy_

£~ 1)

The above comes from the requirements that <§ % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

5= [ Lay
n

=/(t+11)2dy

S is found from

Which results in

y
(t+1)*

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

s _ Si+w(t,y)S, @)
dR R;+w(t,y)R,

Where in the above Ry, Ry, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

2y
ty) = ——
Evaluating all the partial derivatives gives
Rt =
R,=0
2
St - - y 3
(t+1)
1
Sy = 2
(t+1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

v,
(t+1)
Which simplifies to
v,
(t+1)
Which gives
y=oc(t+1)°

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in ¢,y coordinates coordinates (R, S)
transformation ’

dy _ 2y s _

dt — t+1 dR
SNNNN VYLVttt r S
N e R IR
NNNANNVV USSP Err A 4
S i
\\\\\&Jé(lt)f;fff/////// S(R]
NNNNNNNVY A A 2
NSNNNNNNV P A
D R A VO S S R—t
w»\'s\»\‘\'\\ Ao
g7 F 7\ B ey y —x Ty 5 T
el A A TN A = 5 7
AAZ727 7 P VN N N N N N e (t_|_1)
////ffffL{\\\\\\\\\\ _—
R R RARR R R R
VAV A B B T T R VR SR SRR N N VRN
AAAEAE PPV
VA A A R R e R U U R R U IR VN 4
R IR R R R R
VAN AR A B A B S E AR U R U NG U N NN

Initial conditions are used to solve for c;. Substituting ¢ = 0 and y = 6 in the above
solution gives an equation to solve for the constant of integration.

6=01
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Q==6
Substituting c; found above in the general solution gives
y = 6(t + 1)

Summary
The solution(s) found are the following

2
y=6(t+1) (1)
904 vod (111111117177 7777777
11ttt r1rr17r7r777777
oo 111111117 717777777707
801 111011171777 777777/77
s 1 1111171717171 777777/77
701 11111717171 77777777p0777
qA 1111177 77777707777
601 1111171 71777777772007777
ol
)7 77
y(1) 5o YO solrrrirrrrrrrzfr7
1171717777777 /777
401 s 117777777777
1777777777777 777777
30 3 /7777777 f s
JI7 77777 s
20- YA/ S IH
VP P
10 10 VS P PP P P b B e g

(a) Solution plot (b) Slope field plot

Verification of solutions

y=6(t+1)°
Verified OK.

7.5.7 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Eg¢uhy):()
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Hence

0p  O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
09
M
oz
09
T _N
Ay
But since ;:gy = 6(9; ;; then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
aa; gy = aa; 8"; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

1 1
Comparing (1A) and (2A) shows that

M(t,y) = ———
1
N(t,y) = —
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
Oy ot
Using result found above gives
oM _ 38 (_L)
Jdy Oy\ t+1
=0
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And

ON _0(1
ot ot\2y

=0
Since %—A; = %{, then the ODE is exact The following equations are now set up to solve
for the function ¢(t,y)
09
— =M 1
5t (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. ¢ gives

%dt:/Mdt
ot

8¢ . 1
¢=—In(t+1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

9¢ :
3y =0+ 1" (y) (4)

But equation (2) says that g—i = ﬁ Therefore equation (4) becomes

1 ,
@=0+f(y) (5)

Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f’(y) dy = / (%) dy

fly) = 1n2(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

In (y)

p=—In(t+1)+—,

+c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

1
01=—ln(t+1)+%y)

The solution becomes
y = e201 (t + 1)2

Initial conditions are used to solve for c;. Substituting ¢t = 0 and y = 6 in the above
solution gives an equation to solve for the constant of integration.

6 = e
In (6
Ci = 2( )

Substituting c¢; found above in the general solution gives

y =6t +12t+6

Summary
The solution(s) found are the following

y="6t>+12t+6 (1)
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20
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(a) Solution plot

Verification of solutions

Verified OK.
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(b) Slope field plot

y==6t24+12t+6

7.5.8 Maple step by step solution

Let’s solve

[y — 2% = 0,y(0) = 6]

Highest derivative means the order of the ODE is 1

/

Y

Separate variables
v 2

y  t+1

Integrate both sides with respect to ¢

Jidt = [ Zdt+c

Evaluate integral

In(y)=2In(t+1)+¢

Solve for y
y=e?(t+1)°
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. Use initial condition y(0) = 6

6 =e%
) Solve for ¢;
c1 = In (6)
. Substitute ¢; = In (6) into general solution and simplify
y = 6(t + 1)
° Solution to the IVP
y=6(t+1)°

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

Ldsolve([diff(y(t),t)=2/(1+t)*y(t),y(O) = 6],y(t), singsol=all) J

y(t) = 6(t +1)°

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 12

LDSolve[{y'[t]==2/(1+t)*y[t],y[O]==6},y[t],t,IncludeSingularSolutions -> True]J

y(t) = 6(t + 1)?
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7.6 problem 1.2-2 (f)

7.6.1 Existence and uniqueness analysis. . . . . .. ... ... .... 2773
7.6.2 Solving aslinearode . . . . ... ... ... ... ... ..., 274
7.6.3 Solving as differentialTypeode . . . .. ... ... ... .. .. 2761
7.6.4 Solving as first order ode lie symmetry lookup ode . . . .. .. 27T
7.6.5 Solvingasexactode . .. .. ... ... ... ... ..... 282
7.6.6 Maple step by step solution . . . . . .. ... ... ... ... 285

Internal problem ID [2481]
Internal file name [OUTPUT/1973_Sunday_June_05_2022_02_41_37_AM_55133636/index.tex]

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-2, page 12

Problem number: 1.2-2 (f).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differential Type",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

yt+y=1=’

With initial conditions
[y(1) = 2]

7.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
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Hence the ode is

! Y 2
A
y+t
The domain of p(t) = 1 is
{t<0VO0O<t}

And the point £y = 1 is inside this domain. The domain of ¢(t) = t? is

{—o0 <t < o0}
And the point ¢y = 1 is also inside this domain. Hence solution exists and is unique.

7.6.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

The ode becomes

Integrating gives

Dividing both sides by the integrating factor u = t results in

_t3+01
V=473

Initial conditions are used to solve for c¢;. Substituting ¢ = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

1
2=CI+Z
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7
CiT = —

4

Substituting ¢; found above in the general solution gives

47
Y=g

Summary
The solution(s) found are the following

4T
Y=y
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e
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0 05 1 15 2 25 3 35 4 0 1 2
t t

(a) Solution plot (b) Slope field plot

Verification of solutions

4T
Y=y

Verified OK.
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7.6.3 Solving as differential Type ode

Writing the ode as

—y+t°
y = 1)
Which becomes
0=(-t)dy+ (> —y)dt (2)

But the RHS is complete differential because

(—t)dy + (£* —y)dt = d(it‘* — yt)

0= d(it‘l — yt)

Integrating both sides gives gives these solutions

Hence (2) becomes

_ t4+401
V="

&1

Initial conditions are used to solve for c;. Substituting ¢t = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

1
2:2014-[—1

7
Ci = —

8

Substituting c; found above in the general solution gives

T4 T

y 8t

Summary
The solution(s) found are the following

AT+ T

y 8t
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(a) Solution plot (b) Slope field plot
Verification of solutions
AT TE4T
y= 8t
Warning, solution could not be verified
7.6.4 Solving as first order ode lie symmetry lookup ode
Writing the ode as
__~t+y
Y =w(t,y)
The condition of Lie symmetry is the linearized PDE given by
M+ w(ny — &) —w?y —w€ —wn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 63: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(t,y) =0
”ty) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

t_dy_ g

£ (1)

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=t

S is found from

o)
Il Il
——

Which results in
S =yt

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ St w(t,y)S,
dR  R;+uw(t,y)R,

(2)

Where in the above Ry, Ry, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

wlty) =~
Evaluating all the partial derivatives gives
R, =1
R,=0
Si=y
Sy =t

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

t3 (2A)

R3
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R4
To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in
t4
yt = 1 +a
Which simplifies to
t4
ytz-z—kq
Which gives
. t4 + 461
VT

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in ¢,y coordinates coordinates (R, S)
transformation ’

dy _  —t3+y dS __ p3

dat — t iz =R
trttt Nttt VY N f
trttr ANttt VY N ff
tttttrt iyttt VY N\t P}
EERRERERI RGNS AN !
R U RS AR SR
ttttrtrraiN—=r1111 NN i
ttttt At NNttt VY N f
trtrtttrrat N~~~ 1110 R = Py N —fem? f
SEEEENYY NYEEESE = Ll er 7 1t
F T T8/ =% 7/ hf T4 1y [ e I ]
ttttr i 7Nt rrft gttt S::yt L¥\\**/ffTR
ttrttr oAVt AT VY N A
ffffff}&%ffffff?f VY Nap—er f
trttt /=Nyt rrtrtrttt VY N ff
ttttr7~vitrtrtrtttt A R
NEEETAYRIIEEEEEEEI VY N ff
ttttr ANV4qt Pttt VY Neam—sm ff
ttttr o NVttt VY N f
trtrtrr Nyttt VY N s—em f

Initial conditions are used to solve for c;. Substituting ¢ = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

1
2=(h4-1
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7
CiT = —

4

Substituting ¢; found above in the general solution gives

47
Y=g

Summary
The solution(s) found are the following

4T
Y=y
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| [ T e

e

o OO NN N

0 05 1 15 2 25 3 35 4 0 1 2
t t

(a) Solution plot (b) Slope field plot

Verification of solutions

4T
Y=y

Verified OK.
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7.6.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

(t)dy = (¢ —y) dt
(—t*+y)dt+(t)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(tay) = _t3+y
N(t,y) =t
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

Using result found above gives

And

e OM _ ON
Since 29 = Bt

for the function ¢(t,y)

Integrating (1) w.r.t. ¢ gives

oM _on
oy Ot

oM _ 0
dy Oy
=1

(—t*+y)

8_N_2(t)
ot ot
=1

then the ODE is exact The following equations are now set up to solve

0p

5 =M (1)
0¢
oy =V 2)

op ..
E&_/M&

¢ ., _ 3

¢=—i#+m+f@) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

: )
But equation (2) says that 3%

9¢ /
3 =t+f(y) (4)

= t. Therefore equation (4) becomes

t=t+f(y) (5)
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Solving equation (5) for f'(y) gives
f'y) =0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

1
¢=—Zt4+yt+01

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

1t4 +yt
cL=—-
1 4 Yy
The solution becomes
. t4 —|— 401
V=4

Initial conditions are used to solve for c¢;. Substituting ¢ = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

1
2=(21-|-L—1

01=Z

Substituting c¢; found above in the general solution gives

47
V=4
Summary
The solution(s) found are the following
tt 47
= 1
V=g (1)
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(a) Solution plot (b) Slope field plot
Verification of solutions
T
V=g
Verified OK.
7.6.6 Maple step by step solution
Let’s solve
[yt+y=1%y(1) =2
. Highest derivative means the order of the ODE is 1
yl
° Isolate the derivative
y/ — _??/ +t2
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

° The ODE is linear; multiply by an integrating factor u(t)
u) (o +¥) = u) £
o Assume the lhs of the ODE is the total derivative 4 (u(t) y)

ut) (v +4) =wt)y+ put)y
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Isolate u'(t)
w(t) =12

t
Solve to find the integrating factor
u(t) =t
Integrate both sides with respect to ¢
[ (&) 9) de = [ () dt + e
Evaluate the integral on the lhs
p(t)y = [ pt)t?dt +

Solve for y

_ Ju@®t?dtte
y= n(t)

Substitute u(t) =t
_ [tdt+a
= [tota

Evaluate the integrals on the rhs

é+C1
y=-"5
Simplify
4 C
y= "5
Use initial condition y(1) = 2
2= C1 + i
Solve for ¢;
Cc = E

Substitute ¢c; = 71 into general solution and simplify

s

y ="

Solution to the IVP
— t*47

4t
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve([t*diff(y(t),t)=-y(t)+t“3,y(1) = 2],y(t), singsol=all) J
t' 47

v Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 27

LDSolve[{y'[t]==-y[t]+t‘3,y[1]==2},y[t],t,IncludeSingularSolutions -> Truel J

y(t) = > — 3t + 6t +4e' " — 6
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8.1
8.2
8.3
8.4

Problem 1.2-3, page 12

problem 1.2-3 (&) . . . . . . . ... 2891
problem 1.2-3 (b) . . . . . ...
problem 1.2-3 (¢) . . . . . . ... B1T
problem 1.2-3 (d) . . . . . . ...
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8.1 problem 1.2-3 (a)

8.1.1 Existence and uniqueness analysis. . . . . .. .. ... ... .. 289
8.1.2 Solving as linearode . . . . . . ... ... ... ... 290)
8.1.3 Solving as first order ode lie symmetry lookup ode . . ... ..
8.1.4 Solvingasexactode . .. ... .................. 297
8.1.5 Maple step by step solution . . . . ... ... ...

Internal problem ID [2482]
Internal file name [OUTPUT/1974_Sunday_June_05_2022_02_41_41_AM_94026061/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-3, page 12

Problem number: 1.2-3 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type
[_separable]

Y + 4tan (2t) y = tan (2t)

With initial conditions
v(5) =7

8.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
Y +p(t)y = q(t)
Where here

p(t) = 4tan (2t)
q(t) = tan (2t)
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Hence the ode is
Y + 4tan (2t) y = tan (2t)

The domain of p(t) = 4tan (2t) is

1 1 1 1
{t < Zﬂ' + §7I'_Z116 \Y Zﬂ' + §7T_Z116 < t}

And the point ¢ty = Z is inside this domain. The domain of ¢(¢) = tan (2t) is

1 1 1 1
{t < Zﬂ' + §7T_Z116 \Y2 Zﬂ' + §7T_Z116 < t}

And the point t, = § is also inside this domain. Hence solution exists and is unique.

8.1.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is
L= ef4tan(2t)dt
1
cos (2t)

The ode becomes

< (uy) = (1) (tan (26))

%( i’ ): o ) (tan (2¢))
d(cos?(Jzt ) (tan (2¢) sec (2¢)?) dt

Integrating gives

Y 5 = /tan (2t) sec (2t)* dt

cos (2t)
y sec (2t)?
= —|— C
cos (2t)? 4 !
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Dividing both sides by the integrating factor p = — (12 % results in
cos (2t)° sec (2t)? 2
= 1 + ¢; cos (2t)
which simplifies to
1

y = ¢; cos (2t)° + 1

Initial conditions are used to solve for c;. Substituting ¢ = § and y = 2 in the above
solution gives an equation to solve for the constant of integration.

C1 1
2=24-
2+4

Q:=§

Substituting ¢; found above in the general solution gives
1 + 7 cos (2t)?
Y= 1 2

Summary
The solution(s) found are the following

i 1
y=7 5 (1)
H—\ | 11N\ 117\
3.59 Vo 1INV 117N\
=\l | TNV 117N\
| -\ BANAERERR AN
3 -\ AN BEAR
31—=W\ TNV 117N\
55 —=\\l 17N\ 117\
: —=\\ 17N\ 117N\
U ATTHTHAL
y(t) 2 Y(t) o]~y AN 117N0
—=\\ T 17~\) AN
s BN RS AR RPN
=\'\ 17 7=\\\ 177N\
=\'\ 17 7=\ \\ 177N\
. H=~A I 17~ N V77~
—=N\\ 177NN\ | 1] 7=\
-\ 17 7=~N\\ | 17 7=\
05 ——— A e N N R B
— S
0 05 1 15 2 25 3 0 1 2 3
t t
(a) Solution plot (b) Slope field plot
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Verification of solutions

1 N 7 cos (2t)
Y= 1 2

Verified OK.

8.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y' = —4tan (2t) y + tan (2t)
Yy =w(t,y)

The condition of Lie symmetry is the linearized PDE given by
m+wny — &) — Wy —wé —wn=0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 66: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(ty) =0
1
ty) = —— Al
(t-9) 1 + tan (2t)? (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt  dy
£

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

S=/1dy
n

1
1+tan(2t)?

S = (1+tan (2t)2) y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St + w(t,y)S, @)
dR R:+w(t,y)R,

Where in the above Ry, R,, S;, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

w(t,y) = —4tan (2t) y + tan (2t)
Evaluating all the partial derivatives gives

R, =1

R,=0

S, = 4sec (2t)° y tan (2t)
S, = sec (2t)*

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
Z—Z = tan (2t) sec (2t)* (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 2
R tan (2R) sec (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢ (2] (jR)2 +o @)
To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in
sec (2t)%y = w +c
Which simplifies to
sec (2t)%y = w +a

Which gives
_sec (2t)* + 4c,
4sec (2t)?

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . ; ODE in canonical coordinates

Original ode in t,y coordinates coordinates (R, S)

transformation ’
2
% — _4tan (2t)y + tan (2t) 45 = tan (2R) sec (2R)

ISR EREERI R’ N NN AN N LS
AR’ MR IWE S N S Y B N S N
tLitbitiifittittittd NN N AT N NS
IEEEEEREENII DR NN N AN N N
fydty ﬁ@ fivt vty N \/A%§ NN A A
R EER fvt vty N N N NS N A N
PR A A SR A IV N VL N RV (N NN NN NS
PN ANYANE AN AN 2N 2N NN NN N A
ANV /NSNS ANT ANT ANT AN NN AN AN AN a7
e e e e el el el e R = NN NN AN A LN A L
:;4:;.%; E; E? \;4\; g 9 R AN L I P I S I
N \ = NAEPNAPNAIN A N A A A
R R RN BN sec (2t)"y N2 IR BN I R R L i B
VAt ¥f_{f A NAENA N A W s N s
R A EERERERERE NN N AN A N AN A
AR IR NN AN NN
O O T A A T O AR A A NN N AN N N
Vit btr bt et iyttt NN N LA NN
L A A O A O 1 A A NN AN NN
LN R O O N O O NN N AN N N

Initial conditions are used to solve for c¢;. Substituting ¢ = T and y = 2 in the above

solution gives an equation to solve for the constant of integration.
C1 1

2="24=
2 "1
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C =

Substituting ¢; found above in the general solution gives

7 cos (2t)?

The solution(s) found are the following

Summary

(1)

== = = = = _=_>
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o7 7]
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(b) Slope field plot

(a) Solution plot

Verification of solutions

Verified OK.
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8.1.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

Therefore

dy = (—4tan (2t) y + tan (2¢)) d¢
(4tan (2t)y — tan (2t))dt+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(t,y) = 4tan (2t) y — tan (2t)
N(t,y) =1
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Ot
Using result found above gives
oM 0
—— =__(4 2t)y — 2
3 3y( tan (2t) y — tan (2t))
= 4 tan (2t)
And
ON 0
b e
ot ot )
=0

Since %—Aj %—JX, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

1 /0M ON
A=y (a—y - ﬁ)
= 1((4tan (2t)) — (0))
= 4 tan (2t)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdt
— ef4tan(2t) dt
The result of integrating gives
= eln<1+tan(2t)2>
= sec (2t)*

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = pM
= sec (2t)° (4 tan (2t) y — tan (2t))
= tan (2t) (4y — 1) sec (2t)?
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And
N =uN
= sec (2t)° (1)
= sec (2t)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

. _dy
M+ N-—= =
+ it 0
(tan (2t) (4y — 1) sec (2t)°) + (sec (2t)°) % =0
The following equations are now set up to solve for the function ¢(¢,y)
0p —
— =M 1
0p —
=N 2
o )
Integrating (1) w.r.t. ¢ gives
%dt = / M dt
ot
% dt = /tan (2t) (4y — 1) sec (2t)* dt
sec (2¢)? (4y — 1
o= W) g 9

4

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

a¢ 2 !
By =% (26)" + () (4)

But equation (2) says that g—q; = sec (2t)®. Therefore equation (4) becomes
sec (2t)* = sec (2t) + f'(y) (5)

Solving equation (5) for f'(y) gives
f'y) =0
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Therefore
fy)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
_sec (2t)? (4y — 1)

¢= 1 ta

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cy constants into new constant c¢; gives the solution as

sec (2t)° (4y — 1)
C = 4

The solution becomes
_sec(2t)’ +4e;
4sec (2t)?

Initial conditions are used to solve for c¢;. Substituting ¢ = § and y = 2 in the above
solution gives an equation to solve for the constant of integration.

C1 1
2=24-
2+4

T
179

Substituting c¢; found above in the general solution gives

1 n 7 cos (2t)?
! 2
Summary
The solution(s) found are the following

1 Tcos (2t)°
v=at T @
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3.5

1INV 117\
1IN I 17\)
TINV 117N\
TNV 117\
ASE 117\
(AN 117\
17N\ 117N\
17N\ 117N\
T7~\ 117N\
17\ 117N
T7~\\ 117N\
[ 17~\\ 117N
11 7~\)\ IRAS
177=\\\ 177N\
7 7=\\| 177\
177=\\1| 177\
177NN\ | 1] 7=\
177NN\ | [/ 7=\
A e N N R B
— T~
0.5 1 1.5 2 2.5 3 0 1 2 3
t t

(a) Solution plot

(b) Slope field plot

Verification of solutions

Verified OK.

1 N 7 cos (2t)°
Y74 2

8.1.5 Maple step by step solution

Let’s solve
[y +4tan (2t) y = tan (2t) ,y(%) = 2]
Highest derivative means the order of the ODE is 1

/

Y
Separate variables
o = —tan(2t)

Integrate both sides with respect to ¢
i #let = [ —tan (2t)dt + ¢

Evaluate integral

In(dy—1) In (1+tan(26)2)
—y - T g TG
Solve for y
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edc1 cos(2t)? 1
et con(ar)? | 1

Y= 1
e  Use initial condition y(%) = 2
2 — 4c1 + 1
° Solve for ¢;
_ In(14)
~ 1
° Substitute ¢c; = ln(14) into general solution and simplify
y= 2+ 7cos(4t)
° Solution to the IVP
y= 2+ 7cos(4t)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.046 (sec). Leaf size: 12

Ldsolve( [diff (y(t),t)+4xtan(2xt)*y(t)=tan(2*t) ,y(1/8*%Pi) = 2],y(t), singsol=aljl.)

7 cos (4t)

y(t) =2+ 1

v/ Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 15

tDSolve[{y'[t]+4*Tan[2*t]*y[t]==Tan[2*t],y[Pi/8]==2},y[t],t,IncludeSingularSo;?tions -> True]

y(t) — gcos(élt) +2
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8.2 problem 1.2-3 (b)

8.2.1 Existence and uniqueness analysis. . . . . .. ... .. ... ..
8.2.2 Solving aslinearode . . . . . . ... ... ... .. 3041
8.2.3 Solving as first order ode lie symmetry lookup ode . . ... ..
8.2.4 Solvingasexactode . . ... ... ... .. ........... 310
8.2.5 Maple step by step solution . . . . . ... ... 0oL

Internal problem ID [2483]
Internal file name [OUTPUT/1975_Sunday_June_05_2022_02_41_44_AM_15660872/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-3, page 12

Problem number: 1.2-3 (b).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

tln(t)y +y=tln(z)

With initial conditions
[y(e) = 1]

8.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
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Hence the ode is

The domain of p(t) = j5 18

{0<t<l,1<t< o0}

And the point ¢, = e is inside this domain. The domain of ¢(t) =1 is

{—00 <t < o0}
And the point ¢, = e is also inside this domain. Hence solution exists and is unique.

8.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor u is

1
lL — ef t1n(t) dt

= In (t)

The ode becomes
%(uy) = p
L)y =)
d(In(¢)y) =1In(¢)dt

Integrating gives

In(t)y= /ln (t) dt

In(t)y=tln(t) —t+ac
Dividing both sides by the integrating factor u = In (¢) results in

_tln(t) -t ¢
 In(¢) In (t)

which simplifies to

_tln(t) e —t
B In (2)
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Initial conditions are used to solve for c;. Substituting ¢t = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

].=Cl

Cl=].

Substituting c¢; found above in the general solution gives

Ctln(t)+1—t¢
N In (t)

Summary
The solution(s) found are the following

_tln(t)+1—t

1
In (2) (1)
3 { VANNN~——F 77T
3111 VAN 777
1 VAN 77/ 7
25 1 LV N 77777
1 W\ JY777
1 VA JH 77T
24 1 VN SYTTTIT
{ W77
s ;1 W77
5 HIITITTT
y(1) y(1) f A I
1 Hh7IIIT T
1 LR N—=7f7 77T
11 ~— )77 77T
11AN—=AS777777777777
0.5 11 7777777777777
111 7777777777777
A1 771777777777 7777777
0 JINIIT 777777777777
—=\11IIIIIII T
005 1 15 2 25 3 35 4 45 5 55 0 1 2 3 4 5
t t
(a) Solution plot (b) Slope field plot

Verification of solutions

_tln(f)+1—¢
N In ()

Verified OK.
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8.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, _tln(t)—y
~ tln(?)
Y =w(t,y)

The condition of Lie symmetry is the linearized PDE given by

Ur +w(77y — &) — w2£y —wi —w,n=0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 69: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form 13 n
linear ode v = f(@)y(z) + g9(x) 0 el fdz
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode v =9g(y) 1 0
homogeneous ODEs of | ' = f (%) x Y
Class A
homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —l—c’
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) z? zy
First order special | y' = g(z) M@+ + f(x) W f)e” fgb:;;)dz_h(m)
form ID 1

polynomial type ode

/ — amztbhiyta
Yy azz+bay+ca

a1basr—aobix—bica+bacy

a1bey—agbiy—aice—azcy

ai1ba—azb;

ai1ba—azb;

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(:z:)dwyn

Reduced Riccati

Y = fil@)y+ folz)y?

e~ J frdz
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The above table shows that

£(t,y) =0

1
ty) = —— Al
n(t,y) = 0 (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt dy
—=-—==d

The above comes from the requirements that (f % + 178%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t
S is found from
1
S = / —dy
n
1
= =W
In(t)
Which results in
S=In(t)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

s _ Si+w(t,y)S, @)
dR ~ R, +w(t,y)R,

Where in the above Ry, Ry, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

_tln(t) -y
Wt Y) = @
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Evaluating all the partial derivatives gives

Rt:].
R,=0
St::%
Sy =1In(?)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
2=l (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = RIn(R) — R+ ¢y (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

In(t)y=tln(t)+c —t
Which simplifies to

In(t)y=tln(t)+c; —t
Which gives

_tlhn(t)+c1—t
N In (t)
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
.. ) ) i ODE in canonical coordinates
Original ode in t,y coordinates coordinates (R, S)
transformation ’
dy _ thln(t)—y ds
t —  tin(t) dR — In (R)
Py Y Now—err N~ AP PLL
Plyy N N AL
MDAt ANr A
N S
N w7 77 N> AN ]
¥ f PV N7 7 S(R) NP
2t Y e r o N
N et Nl A SPLPTT
ttN—em o R=— N AL SIS
N BEINYNYY. t N—er S PP
24 22 0/"\;;;’2;’/’/’)4’//’ S —1n(t 24 22 o\\-»/g//;é;;
N AP = N~sr A
\H/’/t;//// n(t)y \‘»//R;///’/
S DR A R s S s
\itrrrrrrs N~ AL L]
Vittrrrrrs NS S
VYt rrrrrSs N~ o AP PLL
IR B 4N A TSSO
Vit rrrrrr N~ AL LS
Vittrrrrrry NI

Initial conditions are used to solve for c;. Substituting t = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1261

Clzl

Substituting ¢; found above in the general solution gives

Summary

The solution(s) found are the following

_tln(t)+1—t

In (2)

tln(t)+1—t

In (2)
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3 | \\NN\NN~—— T
311 R 777
f VAN 77/ 7
2.5 1 AR 77777
1 VAN 7Y’
f VA JHI T
2 o 1 VN YT
{ W77
s %’ A0
y(1) y(1) f A I I
f AT
1 1 11 HA77777 77777
11 ~~f 77777777777
1 1AN=S777777777777
0.5 11 A7
111 J7777777777777
A1 771777777777 7777777
O JINIIT 777777777777
—=\N1777777777777777
005 1 15 2 25 3 35 4 45 5 55 0 1 2 3 4 5
¢ ¢
(a) Solution plot (b) Slope field plot
Verification of solutions
_thn(t)+1—t
B In (¢)
Verified OK.
8.2.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
%(b(x ) y) =0
Hence 06 04d
Yy _
or  Oydxr 0 (B)
Comparing (A,B) shows that
0
9 M
0
8_3/ =N
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But since aa g = a a then for the above to be valid, we require that
yox

OM ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = aay 55 is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)
Therefore
(tln(t))dy = (tIn () —y)dt
(—tln(t) +y)dt+(tIn(¢))dy =0 (2A)
Comparing (1A) and (2A) shows that
M(t,y)=—tln(t)+y
N(t,y) =tln(t)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Ot
Using result found above gives
oM 0
1
T =5yt ®+)
=1
And
ON 0
ot ot a1 )
=In(t)+1

Slnce 7é %> then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let
4o k(2 _on
oy ot
1

= i@ - @+ 1)

—

(S 3
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdt
o
The result of integrating gives
p=e" In(¢)
1
ot

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

= (-t () +v)
And

~ Lem )
= In (¢)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

—  —dy
M+N—==0
+ dt

(—_“n gt) * y> + (In (8)) ‘;—Zt’ —0

The following equations are now set up to solve for the function ¢(¢,y)

o
En (1)

99
Oy

I
<

I

=1
~~
=
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Integrating (1) w.r.t. ¢ gives
9 41 — / M dt
ot

0¢ —tln(t)+y
Edtz/fdt
¢=(y—t)Int)+t+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

9¢ /
- In () + f'(y) (4)

But equation (2) says that g—‘; = In (¢). Therefore equation (4) becomes
In (t) = In (t) + f'(y) (5)
Solving equation (5) for f’'(y) gives

flly)=0

Therefore
fy)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
dp=@wW—-t)n@t)+t+ac

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

ca=w—t)ln(t)+1¢

The solution becomes
_tln(t)+eci—t
N In (2)
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Initial conditions are used to solve for c;. Substituting ¢t = e and y = 1 in the above
solution gives an equation to solve for the constant of integration.

].=Cl

Cl=].

Substituting c¢; found above in the general solution gives

Ctln(t)+1—t¢
N In (t)

Summary
The solution(s) found are the following

_tln(t)+1—t

1
In (2) (1)
3 { VANNN~——F 77T
3111 VAN 777
1 VAN 77/ 7
25 1 LV N 77777
1 W\ JY777
1 VA JH 77T
24 1 VN SYTTTIT
{ W77
s ;1 W77
5 HIITITTT
y(1) y(1) f A I
1 Hh7IIIT T
1 LR N—=7f7 77T
11 ~— )77 77T
11AN—=AS777777777777
0.5 11 7777777777777
111 7777777777777
A1 771777777777 7777777
0 JINIIT 777777777777
—=\11IIIIIII T
005 1 15 2 25 3 35 4 45 5 55 0 1 2 3 4 5
t t
(a) Solution plot (b) Slope field plot

Verification of solutions

_tln(f)+1—¢
N In ()

Verified OK.
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8.2.5 Maple step by step solution

Let’s solve

tin(t)y +y=tln(t),y(e) =1]
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=1- tln(t)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

Y+ mm =1

° The ODE is linear; multiply by an integrating factor u(t)
u(t) (v + iy ) = (@)

o Assume the lhs of the ODE is the total derivative 2 (u(t)y)
p(t) (y’ + ﬂf{(t)) =Wy +ul)y

e  Isolate y/(t)

’(t) ()

T tln(t)
° Solve to find the integrating factor
pu(t) =In (¢)
° Integrate both sides with respect to ¢
S (Ew®)y)dt= [ ut)dt+c

° Evaluate the integral on the lhs
p)y= [u@)dt+c

° Solve for y
_ Ju@®)ditc
Y= "0
o Substitute p(t) = In (¢)
f In(t)dt+c1
= ln(t)
° Evaluate the integrals on the rhs

_ tln(¢)+e1—t
- In(t)

o Use initial condition y(e) =1

315



1=Cl

° Solve for ¢;
C1 = 1
° Substitute c; = 1 into general solution and simplify
_ tln(t)+1—t
Y= "

° Solution to the IVP

_ tln(®)+1—t¢
Y= "

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

Ldsolve([t*ln(t)*diff(y(t),t)=t*1n(t)—y(t),y(exp(l)) = 1],y(t), singsol=all) J

y(t) = thl(i)l—(_t)t"'l

v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 19

LDSolve[{t*Log[t]*y'[t]==t*Log[t]—y[t],y[Exp[l]]==1},y[t],t,IncludeSingularSo;?tions -> True]

—t+tlog(t) +1
log(t)

y(t) =
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8.3 problem 1.2-3 (c)

8.3.1 Existence and uniqueness analysis. . . . . .. ... ... .... 3171
8.3.2 Solving aslinearode . . . . .. . ... ... ... ... ... 318
8.3.3 Solving as first order ode lie symmetry lookup ode . . ... .. 3201
8.3.4 Solvingasexactode . .. ... .................. 325]
8.3.5 Maple step by step solution . . . . . ... ... 330

Internal problem ID [2484]
Internal file name [OUTPUT/1976_Sunday_June_05_2022_02_41_48_AM_14092017/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-3, page 12

Problem number: 1.2-3 (c).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

With initial conditions
1
Z)l=1
(3)=]

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(t)y = q(t)

Where here
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Hence the ode is

The domain of p(t) = z27 is

{—o<t<-1,-1<t< 1,1 <t< o0}
And the point ¢y = § is inside this domain. The domain of ¢(t) = 3 is

{—00 <t < o0}
And the point £y = % is also inside this domain. Hence solution exists and is unique.

8.3.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

2
p=el %

_ —t?+1
(t+1)°

Which simplifies to

The ode becomes

Integrating gives

(—t+1)y /—3t+3
=y dt
t+1 t+1
(—t+1)y

] =-3t+6ln(t+1)+c
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Dividing both sides by the integrating factor yu = %ﬁl results in

(~t=1) (=3t +6ln(t+1)  a(-t-1)
t—1 t—1

y:

which simplifies to

t+1)Bt—6In(t+1)—c)
t—1

Initial conditions are used to solve for c¢;. Substituting ¢t = % and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= —g +18In (3) — 181n (2) + 3¢

= %1 —6In(3)+6In(2)

Substituting ¢; found above in the general solution gives

Y= —36In(t+1)t+361In(3)t—36In(2)t+ 18> — 361In (¢t + 1) + 361n(3) — 361n (2) + 7t — 11
- 6t — 6

Summary
The solution(s) found are the following

y (1)
_ —36ln(t+1)t+36In(3)t —361In(2)¢t+ 18t* —361In (t + 1) + 361n (3) — 361n (2) + 7t — 11
a 6t — 6

N\~ s
\\NN~——r s 7 7
\\N—~—rrrm 7 7 7
\\~———s 7777
\NN—~——r s 77TV
N~—rr 7 7777777
NS
ST
SIS
77777
ST

N
N
N

7
7777
1777777
1777777
1177777
1177777
1177777
11717777
11717777
1111777
1117777

NNNNNNN
NNNNNN N
NANNNNNN

od NN NNNN

2
t t

(a) Solution plot (b) Slope field plot
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Verification of solutions

Y
_ —36In(t+1)t+36In(3)¢t —361In(2)t+ 18t —361n (¢t + 1) + 361n (3) — 361n (2) + 7t — 11

6t — 6

Verified OK.

8.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,_ =3 +2y+3
t?2—-1

Y =w(ty)

The condition of Lie symmetry is the linearized PDE given by

m+w(ny —&) —wéy —wf —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 72: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
£(ty) =0
t+1)°
nty) =57 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (¢,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dt  dy
£

The above comes from the requirements that (f % + na%) S(t,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S = / —dy
n
1
= | ) dy
—t2+1

S is found from

Which results in
(-4 1)y
(t+ 1)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS  Si+w(t,y)S,

= = 2
dR R+ w(t,y)R, @)

Where in the above R, Ry, St, S, are all partial derivatives and w(t, y) is the right hand
side of the original ode given by

—3t2+2y+3
“bv)=-—"m 1
Evaluating all the partial derivatives gives
Rt == 1
R,=0
_ %
ot +1)?
_ —t+1
Yot +1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _ —3t+3
dR  t+1

We now need to express the RHS as function of R only. This is done by solving for ¢,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dS —3R+3
dR R+1

(24)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=-3R+6In(R+1)+¢

(4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This

results in
_t-Dy_ _
t+1
Which simplifies to
_t=Dy_ _
t+1

Which gives

_(t+1)(=3t+6ln(t+1)+c)

3t+6ln(t+1)+c

3t+6ln(t+1)+c

t—1

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in ¢,y coordinates coordinates (R, S)
transformation ’
dy _ _ —3t242y+3 dS _ —3R+3
t t2—1 dR =~ R+1

PrPAPZANS MY AN R TR 17NN N NN
A SRR P A~ NN NN NN
PrAP27=Vt 8ttt = ) L T A 41/ =~ N N % N NN
ftrrrrs=Vttitt =221 17"7 R R T P/~ NN NN LN
ffffffj,'@ff?f&/'/‘/ffff X&X&&&ng M/ == NN NN NN
rrrrr A SISRTASARAR NRRNRRAR Y L N ] FSSSRNENENENENENEY
frrrrr ANt N NN LSS [ A A A S S A
fFrrtrrr2~t ittt rrrrt B EEEER Pl N N NN NN
frrrrrrr Attt Attt S R=t L R A 1/ N N NN VN
EEEEERNERIIENEREREES, R 1 VSN NN
NN YR YRR (t_l)y Vid T NEESS YRR
DA A A A A S N VA A A A — _ [ R A A Pl =~ Npe % N NN
PPttt t NNttt t+1 | O R A f/‘/'\\\R\\\\\a
D A A A A S W U A S A Vb bbby _1;4//\\\\\\\\
frrtr NNy [ R A A AN NN N YN
frrtrrr NN L T A A~ N N NN LN
frrrrtr Nt rrrrry | R T T A 4 PlA"~N NN NN\ Y
D0 A A A A A A 0 A A o S e R R AR
frrtrrr bVt rrrrrt L T A P/~ N N NN YN
P A A A A % R Y A S A L T T T 0 £ V= N N N N SR NN
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Initial conditions are used to solve for c;. Substituting ¢ = % and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= —g +181n (3) — 181n(2) + 3¢,

11
61:-6“—6hw3)+6h1@)

Substituting c; found above in the general solution gives

_ —36In(t+1)t+36In(3)¢t—36In(2)¢t+ 18t2 — 36In (¢t + 1) +361n(3) — 361n (2) + 7t — 11
B 6t — 6

Y

Summary
The solution(s) found are the following

y (1)
_ —36Iln(t+1)t+36In(3)t —361In(2)¢t+ 18t* —36In(t+ 1)+ 361n(3) — 361n(2) + 7t — 11
B 6t — 6
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(a) Solution plot (b) Slope field plot

Verification of solutions

Y
_ —36In(t+1)t+36In(3)¢t—361In(2)t+ 18t* —361In (¢t + 1) +361n(3) — 361n (2) + 7t — 11
a 6t — 6

Verified OK.
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8.3.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8%¢ _ 8%¢
dz0y ~ OyOx

But since then for the above to be valid, we require that

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)

2y
dy = (_t2+1+3) dt

2y _

Therefore
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Comparing (1A) and (2A) shows that

N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON

oy Ot

Using result found above gives

8M_8( 2y _3)

dy  Oy\ —2+1
2
21
And
ON 0
o oV

=0

Since %i: # %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

P <8M 8N>

“N\oy ot
((-=53)-0)
:t22—1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

,u=efAdt

2
= ef t2-1 dt

The result of integrating gives

__ ,—2 arctanh(t)

u=e
_—t+1
Cot+1
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M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
_—t+1/ 2y _3
Cot+1 —t2+1

3t2 — 2y —3

o (t+1)?
And
N =uN
—t+1
= 1
t+1 ( )
_—t+1
ot+1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
__dy

M+NY
+dt0

3t2—2y—3 —t+1\d
—y2 4+ + _y:()
(t+1) t+1 ) dt

The following equations are now set up to solve for the function ¢(¢,y)

9 —
g_t_M (1)
6

=N @)

Integrating (1) w.r.t. ¢ gives
99 dt = / M dt
ot
t? — 2y —
@&:/i_J%E&
ot (t+1)
¢—3t—61n(t+1)-|—2—y+f() (3)
B t+1 Y
Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives
0¢ 2 ,
r__c 4
R Bl @
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—t+1

+o7 - Therefore equation (4) becomes

But equation (2) says that 3—"; =

—t+1 2
t+1 t+1

+ () (5)
Solving equation (5) for f'(y) gives
flly)=-1

Integrating the above w.r.t y gives

/f’(y) dy:/(—l)dy

fly)=-y+a

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
6=3t—6ln(t+1)+—Y —y+
t+1 /T4
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as
2y

=3t—6ln(t+1)+—> —
C1 3 6n(+)+t+1 ()

The solution becomes

(t+1)(=3t+6In(t+1)+c1)
t—1

y=-

Initial conditions are used to solve for c;. Substituting ¢ = % and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1= —g +18In (3) — 181n(2) + 3¢

¢ = % —6In(3)+6In(2)
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Substituting c¢; found above in the general solution gives

_ —36In(t+1)t+36In(3)t —361n(2) ¢+ 18t —

361n (£ + 1) 4 361n (3)

—36In(2) + 7t — 11

Summary

The solution(s) found are the following

Y

_ —36ln(t+1)t+36In(3)¢t—361n(2)t + 18t* —

6t —6

361n (¢t + 1) + 361In (3) —

(1)
361n (2) + 7t — 11

(a) Solution plot

Verification of solutions

Y

_ —36In(t+1)t+36In(3)t —361n(2)¢t + 18>

6t —6
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(b) Slope field plot

o NN

—36In(t+1)+36In(3) —

361n (2) + 7t — 11

Verified OK.
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8.3.5 Maple step by step solution

Let’s solve

v - =5 =3.u(3) =1]
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
¥ =3- 2%

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y+ 2L =3

° The ODE is linear; multiply by an integrating factor w(t)
p(t) (v + 22) = 3u(t)

o Assume the lhs of the ODE is the total derivative 4 (u(t) y)
wt) (' + 7%5) =Wy +u®)y

o Isolate p'(t
w(t) =39

° Solve to find the integrating factor
pt) =51

° Integrate both sides with respect to ¢

f(%(ﬂ(t) ) = [3u(t)dt+ ¢

° Evaluate the integral on the lhs
pt)y = [3ut)dt +a

° Solve for y
__ [3u()dttc
Y="u®
e Substitute u(t) = I
o+ () 24P de+er)
= t—1
° Evaluate the integrals on the rhs
_ (#4+1)(3t—61n(t+1)+c1)
y= t—1
° Use initial condition y(%) =1
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1=-2+18In(2) -3¢

° Solve for ¢;
o=~ +0in )
e  Substitutec; = —% +61In (2) into general solution and simplify

(18636 In(t+1)— 11436 In(3)—36 In(2)) (t+1)
y= 6t—6

° Solution to the IVP

_ (18t—36In(¢-+1)—11+361n(3)—36 In(2))(t+1)
y= 61—6

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 34

Ldsolve([diff(y(t),t)=2/(1-t"2)*y(t)+3,y(1/2) = 1],y(t), singsol=all) J

(t+1) (18t — 361n (£ + 1) — 11 + 361n (3) — 361n (2))
ylt) = 6t — 6

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 34

LDSolve[{y'[t]==2/(1—t‘2)*y[t]+3,y[1/2]==1},y[t],t,IncludeSingularSolutions —%JTrue]

(t+1) (18t — 36log(t +1) — 11 + 361og (2))
y(t) — 6t —1)
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8.4 problem 1.2-3 (d)

8.4.1 Existence and uniqueness analysis. . . . . ... ... ... ...
8.4.2 Solving aslinearode . . . . . . ... ... .. ... ... 333]
8.4.3 Solving as first order ode lie symmetry lookup ode . . ... ..
84.4 Solvingasexactode . . ... ... ... . ............ 339
8.4.5 Maple step by step solution . . . . . ... ... 343

Internal problem ID [2485]
Internal file name [OUTPUT/1977_Sunday_June_05_2022_02_41_52_AM_30503089/index.tex|

Book: Ordinary Differential Equations, Robert H. Martin, 1983
Section: Problem 1.2-3, page 12

Problem number: 1.2-3 (d).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Yy + cot (t) y = 6cos (t)?

With initial conditions
(7))

8.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
Y +p(t)y = q(t)
Where here

p(t) = cot (?)
q(t) = 6cos (t)°
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Hence the ode is
Yy + cot (t)y = 6.cos (t)°
The domain of p(t) = cot (¢) is

{t <m_Z133 Vv r_Z133 < t}

And the point t, = 7 is inside this domain. The domain of ¢(t) = 6 cos (t)* is

{—o0 <t < o0}

And the point #, = 7 is also inside this domain. Hence solution exists and is unique.

8.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

p= ef cot(t)dt

= sin (¢)

The ode becomes
d
< () = (1) (603 £)?)

%(Sm (t)) = (sin (£)) (6 cos (¢)?)
d(sin (t) y) = (6sin () cos (t)*) dt

Integrating gives
sin (t)y = / 6sin () cos (t)° dt
sin (£) y = —2cos (£)° + ¢

Dividing both sides by the integrating factor u = sin (¢) results in
y = —2csc (t) cos (t)* + ¢; csc ()

which simplifies to

y = csc (t) (—2cos ()% + cr)
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Initial conditions are used to solve for c;. Substituting ¢ = 7 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3=-1+V2¢

¢ =22
Substituting ¢; found above in the general solution gives
y = —2csc (t) cos (t)* + 2csc (t) V2

Summary
The solution(s) found are the following

y = —2csc (t) cos (t)* + 2 csc (t) V2 (1)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = —2csc (t) cos (t)* + 2 csc (t) V2

Verified OK.
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8.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y = —cot (t) y + 6cos (t)*

Y =w(ty)

The condition of Lie symmetry is the linearized PDE given by

Tt +w(77y - gt) - w2§y —wi€ — Wyt = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 75: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

£(t,y) =0

n(t,y) = ﬁ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (t,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dt dy
—=-—==d

The above comes from the requirements that (f % + 178%) S(t,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=t

1
S=/—dy
n
1

- / T %
sin(t)

S is found from

Which results in
S =sin(t)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

s _ Si+w(t,y)S, @)
dR ~ R, +w(t,y)R,

Where in the above Ry, Ry, St, S, are all partial derivatives and w(t,y) is the right hand
side of the original ode given by

w(t,y) = —cot (t) y + 6 cos (t)°
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Evaluating all the partial derivatives gives

R =1
R,=0

Sy =cos(t)y
S, = sin (¢)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds . 2
R 6 sin (t) cos (t) (2A)

We now need to express the RHS as function of R only. This is done by solving for ¢,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as , 2
R = 6sin (R) cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —2cos (R)® + ¢, (4)

To complete the solution, we just need to transform (4) back to ¢,y coordinates. This
results in

sin (t)y = —2cos (t)* 4 ¢
Which simplifies to

sin () y = —2cos (£)° + ¢
Which gives

2cos (t)° — ¢
B sin (¢)
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= —cot (t)y + 6cos (t)°

dy _
dt

Original ode in t,y coordinates

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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and y = 3 in the above

solution gives an equation to solve for the constant of integration.

1

2q
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a=2V2

3=—-1+
y = —2csc (t) cos (t)* + 2csc () V2

y = —2csc (t) cos (t)* + 2 csc (t) V2

Initial conditions are used to solve for c¢;. Substituting ¢
Substituting c¢; found above in the general solution gives

The solution(s) found are the following

Summary
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(a) Solution plot (b) Slope field plot
Verification of solutions
y = —2csc (t) cos (t)* + 2 csc () V2
Verified OK.
8.4.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
%ﬁb("ra y) =0
Hence 96 06d
Yy _
ox + Ooydr 0 (B)
Comparing (A,B) shows that
0p
9 M
0p
3 =
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But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(t,y)dt+N(t,y)dy =0 (1A)
Therefore
dy = (—cot (t) y + 6 cos (t)*) dt
(cot (t) y — 6cos (t)*) dt +dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(t,y) = cot (t)y — 6 cos (t)*
N(t,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Ot
Using result found above gives
oM 0 2
By~ oy (cot (t) y — 6 cos (t))
= cot ()
And
ON 0
Bt o)

=0

Since %i; %—If, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

am k(2 o)

" N\oy ot
= 1((cot (£)) — (0))
= cot (t)
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Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor u is

p=e JAdt
—e J cot(t) dt
The result of integrating gives
L= eln(sin(t))
= sin (?)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
= sin (2) (cot (t)y — 6 cos (t)2)
= cos (t) (—6sin (t) cos (t) + )

And

= sin (¢) (1)
= sin ()

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
. _dy
M —= =0
TV
d
dy _

(cos (t) (—6sin () cos (t) + y)) + (sin (¢)) 3

The following equations are now set up to solve for the function ¢(¢,y)

96 —
g—t—M

6

3—y—N (2)

Integrating (1) w.r.t. ¢ gives
¢ —
N dt = / M dt
99 :
—dt = [ cos(t) (—6sin (t) cos (t) +y) dt

ot
¢ =sin (t)y + 2cos (t)* + f(y)
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Where f(y) is used for the constant of integration since ¢ is a function of both ¢ and y.
Taking derivative of equation (3) w.r.t y gives

o =sin () + /) (@)
But equation (2) says that g—i = sin (t). Therefore equation (4) becomes
sin (¢) = sin (£) + f'(y) (5)
Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ =sin (t) y + 2cos (¢)° + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and cy constants into new constant c¢; gives the solution as

¢, = sin (t) y + 2cos (t)?

The solution becomes
2 cos (t)° — ¢

v= sin (t)

Initial conditions are used to solve for c;. Substituting ¢ = 7 and y = 3 in the above
solution gives an equation to solve for the constant of integration.

3=—1+v2¢

o =2V2

Substituting c; found above in the general solution gives

y = —2csc (t) cos (t)* + 2 csc () V2
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Summary
The solution(s) found are the following

y = —2csc (t) cos (t)* + 2 csc () V2 1)
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Verification of solutions

y = —2csc (t) cos (t)° + 2 csc () V2
Verified OK.

8.4.5 Maple step by step solution

Let’s solve
[y + cot (t) y = 6cos (t)*,y(Z) = 3]
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y = —cot (t) y + 6cos (t)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + cot (t) y = 6cos (t)?

° The ODE is linear; multiply by an integrating factor u(t)
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p(t) (' + cot (t) y) = 6p(t) cos (t)”

Assume the Ihs of the ODE is the total derivative 2 (u(t)y)
u(t) (¥ +cot (t) y) = p'(t) y + p(®) ¥’

Isolate u'(t)

w'(t) = p(t) cot (¢)

Solve to find the integrating factor

p(t) = sin (¢)

Integrate both sides with respect to ¢

J (5 ((t)y)) dt = [ 6p(t) cos (t)* dt + ey

Evaluate the integral on the lhs

pt)y = [ 6u(t)cos (t) dt + c;

Solve for y
_ [6u(t) cos(t)?dt+c1
y= H(o)
Substitute u(t) = sin (¢)
[ 6sin(t) cos(t)?dt+c
y= sin(t) :
Evaluate the integrals on the rhs
_ 3.
y= 2
Simplify

y = csc (t) (—2cos (t)° + cr)
Use initial condition y(§) =3
3=1v2 (—72 + Cl)

Solve for ¢;

1 =242

Substitute ¢; = 24/2 into general solution and simplify
y = —2(cos (t)® — V2) esc (t)

Solution to the IVP

y = —2(cos (t)* — v/2) csc (t)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

Ldsolve([diff(y(t),t)=-cot(t)*y(t)+6*cos(t)“2,y(1/4*Pi) = 3],y(v), singsol=a11?

y(t) = —2csc (t) (cos ()% — \/ﬁ)

v/ Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 23

‘DSolve[{y'[t]==-Cot[t]*y[t]+6*Cos[t]“2,y[Pi/4]==3},y[t],t,IncludeSingularSolu#ions -> True]

y(t) = 2v/2csc(t) — 2 cos?(t) cot(t)
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