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1.1 problem 7.2.1
1.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 11

Internal problem ID [5503]
Internal file name [OUTPUT/4751_Sunday_June_05_2022_03_04_57_PM_30656618/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second_order_ode_can_be_made_integrable", "second order series
method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y = 0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

d2

dt2
y(t) + y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (2)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y(t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

= − d

dt
y(t)

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

= y(t)

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

= d

dt
y(t)

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= −y(t)

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = y(0)
F3 = y′(0)
F4 = −y(0)

Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1− 1

2t
2 + 1

24t
4 − 1

720t
6
)
y(0) +

(
t− 1

6t
3 + 1

120t
5
)
y′(0) +O

(
t6
)
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Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) antn−2 = −

(
∞∑
n=0

ant
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) antn−2

)
+
(

∞∑
n=0

ant
n

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=0

ant
n

)
= 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an = 0
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Solving for an+2, gives

(5)an+2 = − an
(n+ 2) (n+ 1)

For n = 0 the recurrence equation gives

2a2 + a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0
2

For n = 1 the recurrence equation gives

6a3 + a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
6

For n = 2 the recurrence equation gives

12a4 + a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

20a5 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
120

For n = 4 the recurrence equation gives

30a6 + a4 = 0
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Which after substituting the earlier terms found becomes

a6 = − a0
720

For n = 5 the recurrence equation gives

42a7 + a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
5040

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
1
2a0t

2 − 1
6a1t

3 + 1
24a0t

4 + 1
120a1t

5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2 + 1

24t
4
)
a0 +

(
t− 1

6t
3 + 1

120t
5
)
a1 +O

(
t6
)

At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 + 1

24t
4
)
c1 +

(
t− 1

6t
3 + 1

120t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =
(
1− (x− 1)2

2 + (x− 1)4

24 − (x− 1)6

720

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)5

120

)
y′(1) +O

(
(x− 1)6

)
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Summary
The solution(s) found are the following

(1)
y =

(
1− (x− 1)2

2 + (x− 1)4

24 − (x− 1)6

720

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)5

120

)
y′(1) +O

(
(x− 1)6

)

Figure 1: Slope field plot

Verification of solutions

y =
(
1− (x− 1)2

2 + (x− 1)4

24 − (x− 1)6

720

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)5

120

)
y′(1) +O

(
(x− 1)6

)
Verified OK.
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1.1.1 Maple step by step solution

Let’s solve
y′′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the ODE
y1(x) = cos (x)

• 2nd solution of the ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = cos (x) c1 + c2 sin (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+y(x)=0,y(x),type='series',x=1);� �
y(x) =

(
1− (x− 1)2

2 + (x− 1)4

24

)
y(1)+

(
x−1− (x− 1)3

6 + (x− 1)5

120

)
D(y) (1)+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 51� �
AsymptoticDSolveValue[y''[x]+y[x]==0,y[x],{x,1,5}]� �
y(x) → c1

(
1
24(x− 1)4 − 1

2(x− 1)2 + 1
)
+ c2

(
1
120(x− 1)5 − 1

6(x− 1)3 + x− 1
)
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1.2 problem 7.2.2
1.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 20

Internal problem ID [5504]
Internal file name [OUTPUT/4752_Sunday_June_05_2022_03_04_58_PM_27593360/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_or-
der_bessel_ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + 4xy = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (4)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −4xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −4y − 4xy′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −8y′ + 16yx2

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 16x(xy′ + 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −64yx3 + 96xy′ + 64y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −4y(0)
F2 = −8y′(0)
F3 = 0
F4 = 64y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 2

3x
3 + 4

45x
6
)
y(0) +

(
x− 1

3x
4
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −4x
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

4x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

4x1+nan =
∞∑
n=1

4an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=1

4an−1x
n

)
= 0

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + 4an−1 = 0
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Solving for an+2, gives

(5)an+2 = − 4an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 + 4a0 = 0

Which after substituting the earlier terms found becomes

a3 = −2a0
3

For n = 2 the recurrence equation gives

12a4 + 4a1 = 0

Which after substituting the earlier terms found becomes

a4 = −a1
3

For n = 3 the recurrence equation gives

20a5 + 4a2 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

30a6 + 4a3 = 0

Which after substituting the earlier terms found becomes

a6 =
4a0
45

For n = 5 the recurrence equation gives

42a7 + 4a4 = 0
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Which after substituting the earlier terms found becomes

a7 =
2a1
63

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 2
3a0x

3 − 1
3a1x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 2x3

3

)
a0 +

(
x− 1

3x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 2x3

3

)
c1 +

(
x− 1

3x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 2

3x
3 + 4

45x
6
)
y(0) +

(
x− 1

3x
4
)
y′(0) +O

(
x6)

(2)y =
(
1− 2x3

3

)
c1 +

(
x− 1

3x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 2

3x
3 + 4

45x
6
)
y(0) +

(
x− 1

3x
4
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 2x3

3

)
c1 +

(
x− 1

3x
4
)
c2 +O

(
x6)

Verified OK.
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1.2.1 Maple step by step solution

Let’s solve
y′′ = −4xy

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 4xy = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + 4ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 4ak−1 = 0

• Shift index using k− >k + 1

20



(
(k + 1)2 + 3k + 5

)
ak+3 + 4ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = − 4ak

k2+5k+6 , 2a2 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+4*x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 2x3

3

)
y(0) +

(
x− 1

3x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+4*x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x4

3

)
+ c1

(
1− 2x3

3

)
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1.3 problem 7.2.3
1.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 29

Internal problem ID [5505]
Internal file name [OUTPUT/4753_Sunday_June_05_2022_03_04_59_PM_45143449/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ − xy = 0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

d2

dt2
y(t)− (t+ 1) y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (7)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (8)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = (t+ 1) y(t)

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

= y(t) + (t+ 1)
(

d

dt
y(t)

)
F2 =

dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

= 2 d

dt
y(t) + y(t) (t+ 1)2

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

= (t+ 1)
(
(t+ 1)

(
d

dt
y(t)

)
+ 4y(t)

)
F4 =

dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

= (t+ 1)3 y(t) + (6t+ 6)
(

d

dt
y(t)

)
+ 4y(t)

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)
F1 = y(0) + y′(0)
F2 = 2y′(0) + y(0)
F3 = y′(0) + 4y(0)
F4 = 5y(0) + 6y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1 + 1

2t
2 + 1

6t
3 + 1

24t
4 + 1

30t
5 + 1

144t
6
)
y(0)

+
(
t+ 1

6t
3 + 1

12t
4 + 1

120t
5 + 1

120t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then

d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) antn−2 = (t+ 1)
(

∞∑
n=0

ant
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) antn−2

)
+

∞∑
n =0

(
−t1+nan

)
+

∞∑
n =0

(−ant
n) = 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n) tn

∞∑
n =0

(
−t1+nan

)
=

∞∑
n=1

(−an−1t
n)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n) tn
)

+
∞∑

n =1

(−an−1t
n) +

∞∑
n =0

(−ant
n) = 0

n = 0 gives
2a2 − a0 = 0

a2 =
a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n)− an−1 − an = 0

Solving for an+2, gives

(5)

an+2 =
an−1 + an

(n+ 2) (1 + n)

= an
(n+ 2) (1 + n) +

an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 − a0 − a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6 + a1

6

For n = 2 the recurrence equation gives

12a4 − a1 − a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
12 + a0

24
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For n = 3 the recurrence equation gives

20a5 − a2 − a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
30 + a1

120

For n = 4 the recurrence equation gives

30a6 − a3 − a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
144 + a1

120

For n = 5 the recurrence equation gives

42a7 − a4 − a5 = 0

Which after substituting the earlier terms found becomes

a7 =
11a1
5040 + a0

560

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t+
a0t

2

2 +
(a0
6 + a1

6

)
t3 +

(a1
12 + a0

24

)
t4 +

(a0
30 + a1

120

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1 + 1

2t
2 + 1

6t
3 + 1

24t
4 + 1

30t
5
)
a0 +

(
t+ 1

6t
3 + 1

12t
4 + 1

120t
5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1 + 1

2t
2 + 1

6t
3 + 1

24t
4 + 1

30t
5
)
c1 +

(
t+ 1

6t
3 + 1

12t
4 + 1

120t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =
(
1 + (x− 1)2

2 + (x− 1)3

6 + (x− 1)4

24 + (x− 1)5

30 + (x− 1)6

144

)
y(1)

+
(
x− 1 + (x− 1)3

6 + (x− 1)4

12 + (x− 1)5

120 + (x− 1)6

120

)
y′(1) +O

(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)
y =

(
1 + (x− 1)2

2 + (x− 1)3

6 + (x− 1)4

24 + (x− 1)5

30 + (x− 1)6

144

)
y(1)

+
(
x− 1 + (x− 1)3

6 + (x− 1)4

12 + (x− 1)5

120 + (x− 1)6

120

)
y′(1) +O

(
(x− 1)6

)
Verification of solutions

y =
(
1 + (x− 1)2

2 + (x− 1)3

6 + (x− 1)4

24 + (x− 1)5

30 + (x− 1)6

144

)
y(1)

+
(
x− 1 + (x− 1)3

6 + (x− 1)4

12 + (x− 1)5

120 + (x− 1)6

120

)
y′(1) +O

(
(x− 1)6

)
Verified OK.

1.3.1 Maple step by step solution

Let’s solve
y′′ − xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Assume series solution for y
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y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x · y to series expansion

x · y =
∞∑
k=0

akx
k+1

◦ Shift index using k− >k − 1

x · y =
∞∑
k=1

ak−1x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1)− ak−1)xk

)
= 0

• Each term must be 0
2a2 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = ak

k2+5k+6 , 2a2 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve(diff(y(x),x$2)-x*y(x)=0,y(x),type='series',x=1);� �

y(x) =
(
1 + (x− 1)2

2 + (x− 1)3

6 + (x− 1)4

24 + (x− 1)5

30

)
y(1)

+
(
x− 1 + (x− 1)3

6 + (x− 1)4

12 + (x− 1)5

120

)
D(y) (1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78� �
AsymptoticDSolveValue[y''[x]-x*y[x]==0,y[x],{x,1,5}]� �

y(x) → c1

(
1
30(x− 1)5 + 1

24(x− 1)4 + 1
6(x− 1)3 + 1

2(x− 1)2 + 1
)

+ c2

(
1
120(x− 1)5 + 1

12(x− 1)4 + 1
6(x− 1)3 + x− 1

)
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1.4 problem 7.2.4
1.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 38

Internal problem ID [5506]
Internal file name [OUTPUT/4754_Sunday_June_05_2022_03_05_00_PM_32450824/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + yx2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (10)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (11)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −yx2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −x(xy′ + 2y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= yx4 − 4xy′ − 2y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′x4 + 8yx3 − 6y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 12y′x3 − x2y
(
x4 − 30

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = −2y(0)
F3 = −6y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=0

anx
n

)
x2 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

xn+2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

xn+2an =
∞∑
n=2

an−2x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=2

an−2x
n

)
= 0

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an−2 = 0
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Solving for an+2, gives

(5)an+2 = − an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 + a0 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
12

For n = 3 the recurrence equation gives

20a5 + a1 = 0

Which after substituting the earlier terms found becomes

a5 = −a1
20

For n = 4 the recurrence equation gives

30a6 + a2 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

42a7 + a3 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
12a0x

4 − 1
20a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− x4

12

)
a0 +

(
x− 1

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x4

12

)
c1 +

(
x− 1

20x
5
)
c2 +O

(
x6)

Verified OK.

1.4.1 Maple step by step solution

Let’s solve
y′′ = −yx2

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ + yx2 = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1) + ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 + ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = − ak

k2+7k+12 , a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)+x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x4

12

)
y(0) +

(
x− 1

20x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]+x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x− x5

20

)
+ c1

(
1− x4

12

)
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1.5 problem 7.2.5
1.5.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 48

Internal problem ID [5507]
Internal file name [OUTPUT/4755_Sunday_June_05_2022_03_05_01_PM_36928345/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

y′ − xy = 0

With the expansion point for the power series method at x = 0.

1.5.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0
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But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f

Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f
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Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)

Hence

F0 = xy

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

=
(
x2 + 1

)
y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

= xy
(
x2 + 3

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

= y
(
x4 + 6x2 + 3

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

= xy
(
x4 + 10x2 + 15

)
And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = y(0) gives

F0 = 0
F1 = y(0)
F2 = 0
F3 = 3y(0)
F4 = 0

Substituting all the above in (6) and simplifying gives the solution as

y =
(
1 + 1

2x
2 + 1

8x
4
)
y(0) +O

(
x6)
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Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

y′ + q(x)y = p(x)
y′ − xy = 0

Where

q(x) = −x

p(x) = 0

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not. Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

Substituting the above back into the ode gives(
∞∑
n=1

nanx
n−1

)
− x

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=1

nanx
n−1

)
+

∞∑
n =0

(
−x1+nan

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(1 + n) a1+nx
n

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(1 + n) a1+nx
n

)
+

∞∑
n =1

(−an−1x
n) = 0

For 1 ≤ n, the recurrence equation is

(4)(1 + n) a1+n − an−1 = 0

Solving for a1+n, gives

(5)a1+n = an−1

1 + n

For n = 1 the recurrence equation gives

2a2 − a0 = 0

Which after substituting the earlier terms found becomes

a2 =
a0
2

For n = 2 the recurrence equation gives

3a3 − a1 = 0

Which after substituting the earlier terms found becomes

a3 = 0
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For n = 3 the recurrence equation gives

4a4 − a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8

For n = 4 the recurrence equation gives

5a5 − a3 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 5 the recurrence equation gives

6a6 − a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
48

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 +
1
2a0x

2 + 1
8a0x

4 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

2x
2 + 1

8x
4
)
a0 +O

(
x6)
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Summary
The solution(s) found are the following

(1)y =
(
1 + 1

2x
2 + 1

8x
4
)
y(0) +O

(
x6)

(2)y =
(
1 + 1

2x
2 + 1

8x
4
)
c1 +O

(
x6)

Figure 2: Slope field plot

Verification of solutions

y =
(
1 + 1

2x
2 + 1

8x
4
)
y(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 + 1

8x
4
)
c1 +O

(
x6)

Verified OK.

47



1.5.2 Maple step by step solution

Let’s solve
y′ − xy = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
xdx+ c1

• Evaluate integral
ln (y) = x2

2 + c1

• Solve for y

y = ex2
2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
Order:=6;
dsolve(diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 + 1

8x
4
)
y(0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 22� �
AsymptoticDSolveValue[y'[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

8 + x2

2 + 1
)
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1.6 problem 7.2.6
1.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 58

Internal problem ID [5508]
Internal file name [OUTPUT/4756_Sunday_June_05_2022_03_05_02_PM_29033608/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_order_change_of_variable_on_x_method_1",
"second_order_change_of_variable_on_x_method_2", "second order se-
ries method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer , [_2nd_order , _linear , `_with_symmetry_ [0,F(x)]`]]

(
−x2 + 1

)
y′′ − xy′ + p2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (14)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (15)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
p2y − xy′

x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= ((p2 + 2)x2 − p2 + 1) y′ − 3yp2x
(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= (−6p2x3 + 6x p2 − 6x3 − 9x) y′ + ((p2 + 11)x2 − p2 + 4) yp2

(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
((p4 + 35p2 + 24)x4 + (−2p4 − 25p2 + 72)x2 + p4 − 10p2 + 9) y′ − 10yx

(
(p2 + 5)x2 − p2 + 11

2

)
p2

(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (1 + x) (−15x((p4 + 15p2 + 8)x4 + (−2p4 − 2p2 + 40)x2 + p4 − 13p2 + 15) y′ + y((p4 + 85p2 + 274)x4 + (−2p4 − 65p2 + 607)x2 + p4 − 20p2 + 64) p2) (x− 1)
(x2 − 1)6

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0) p2

F1 = −y′(0) p2 + y′(0)
F2 = y(0) p4 − 4y(0) p2

F3 = y′(0) p4 − 10y′(0) p2 + 9y′(0)
F4 = −y(0) p6 + 20y(0) p4 − 64y(0) p2
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Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2p2 + 1

24p
4x4 − 1

6p
2x4 − 1

720x
6p6 + 1

36x
6p4 − 4

45x
6p2
)
y(0)

+
(
x− 1

6p
2x3 + 1

6x
3 + 1

120x
5p4 − 1

12x
5p2 + 3

40x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − xy′ + p2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− x

(
∞∑
n=1

nanx
n−1

)
+ p2

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
∞∑

n =2

(−xnann(n−1))+
(

∞∑
n=2

n(n−1) anxn−2

)
+

∞∑
n =1

(−nanx
n)+

(
∞∑
n=0

p2anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

p2anx
n

)
= 0

n = 0 gives
a0p

2 + 2a2 = 0

a2 = −a0p
2

2

n = 1 gives
a1p

2 − a1 + 6a3 = 0

Which after substituting earlier equations, simplifies to

a3 = −1
6a1p

2 + 1
6a1

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− nan + anp
2 = 0

Solving for an+2, gives

(5)an+2 =
an(n2 − p2)

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

a2p
2 − 4a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
1
24p

4a0 −
1
6a0p

2
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For n = 3 the recurrence equation gives

a3p
2 − 9a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
1
120p

4a1 −
1
12a1p

2 + 3
40a1

For n = 4 the recurrence equation gives

a4p
2 − 16a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = − 1
720p

6a0 +
1
36p

4a0 −
4
45a0p

2

For n = 5 the recurrence equation gives

a5p
2 − 25a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = − 1
5040p

6a1 +
1
144p

4a1 −
37
720a1p

2 + 5
112a1

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0p
2x2

2 +
(
−1
6a1p

2 + 1
6a1
)
x3

+
(

1
24p

4a0 −
1
6a0p

2
)
x4 +

(
1
120p

4a1 −
1
12a1p

2 + 3
40a1

)
x5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− x2p2

2 +
(

1
24p

4 − 1
6p

2
)
x4
)
a0

+
(
x+

(
−p2

6 + 1
6

)
x3 +

(
1
120p

4 − 1
12p

2 + 3
40

)
x5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x2p2

2 +
(

1
24p

4 − 1
6p

2
)
x4
)
c1

+
(
x+

(
−p2

6 + 1
6

)
x3 +

(
1
120p

4 − 1
12p

2 + 3
40

)
x5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

2x
2p2 + 1

24p
4x4 − 1

6p
2x4 − 1

720x
6p6 + 1

36x
6p4 − 4

45x
6p2
)
y(0)

+
(
x− 1

6p
2x3 + 1

6x
3 + 1

120x
5p4 − 1

12x
5p2 + 3

40x
5
)
y′(0) +O

(
x6)

(2)
y =

(
1− x2p2

2 +
(

1
24p

4 − 1
6p

2
)
x4
)
c1

+
(
x+

(
−p2

6 + 1
6

)
x3 +

(
1
120p

4 − 1
12p

2 + 3
40

)
x5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1− 1

2x
2p2 + 1

24p
4x4 − 1

6p
2x4 − 1

720x
6p6 + 1

36x
6p4 − 4

45x
6p2
)
y(0)

+
(
x− 1

6p
2x3 + 1

6x
3 + 1

120x
5p4 − 1

12x
5p2 + 3

40x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x2p2

2 +
(

1
24p

4 − 1
6p

2
)
x4
)
c1

+
(
x+

(
−p2

6 + 1
6

)
x3 +

(
1
120p

4 − 1
12p

2 + 3
40

)
x5
)
c2 +O

(
x6)

Verified OK.
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1.6.1 Maple step by step solution

Let’s solve
(−x2 + 1) y′′ − xy′ + p2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − xy′

x2−1 +
p2y
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + xy′

x2−1 −
p2y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = x
x2−1 , P3(x) = − p2

x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 1
2

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
(x2 − 1) y′′ + xy′ − p2y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (u− 1)

(
d
du
y(u)

)
− p2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k + p+ r) (k − p+ r))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + ak(k + p+ r) (k − p+ r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+p+r)(k−p+r)

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = ak(k+p)(k−p)

(2k+1)(k+1)

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak(k+p)(k−p)

(2k+1)(k+1)

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k , ak+1 = ak(k+p)(k−p)
(2k+1)(k+1)

]

59



• Recursion relation for r = 1
2

ak+1 =
ak

(
k+p+ 1

2
)(
k−p+ 1

2
)

(2k+2)
(
k+ 3

2
)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
ak

(
k+p+ 1

2
)(
k−p+ 1

2
)

(2k+2)
(
k+ 3

2
)

]
• Revert the change of variables u = 1 + x[

y =
∞∑
k=0

ak(1 + x)k+
1
2 , ak+1 =

ak
(
k+p+ 1

2
)(
k−p+ 1

2
)

(2k+2)
(
k+ 3

2
)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(1 + x)k
)
+
(

∞∑
k=0

bk(1 + x)k+
1
2

)
, ak+1 = ak(k+p)(k−p)

(2k+1)(k+1) , bk+1 =
bk

(
k+p+ 1

2
)(
k−p+ 1

2
)

(2k+2)
(
k+ 3

2
)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 71� �
Order:=6;
dsolve((1-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+p^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− p2x2

2 + p2(p2 − 4)x4

24

)
y(0)

+
(
x− (p2 − 1)x3

6 + (p4 − 10p2 + 9)x5

120

)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 88� �
AsymptoticDSolveValue[(1-x^2)*y''[x]-x*y'[x]+p^2*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
p4x5

120 − p2x5

12 − p2x3

6 + 3x5

40 + x3

6 + x

)
+ c1

(
p4x4

24 − p2x4

6 − p2x2

2 + 1
)
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1.7 problem 7.2.7
Internal problem ID [5509]
Internal file name [OUTPUT/4757_Sunday_June_05_2022_03_05_03_PM_97615417/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_2", "sec-
ond order series method. Taylor series method", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(
x2 + 1

)
y′′ − 2xy′ + 2y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

62



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (17)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (18)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
2xy′ − 2y
x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 0

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 0

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 0

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 0

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −2y(0)
F1 = 0
F2 = 0
F3 = 0
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
−x2 + 1

)
y(0) + xy′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ − 2xy′ + 2y = 0
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Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 2x

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n−1)
)
+
(

∞∑
n=2

n(n−1) anxn−2

)
+

∞∑
n =1

(−2nanxn)+
(

∞∑
n=0

2anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−2nanxn) +
(

∞∑
n=0

2anxn

)
= 0

n = 0 gives
2a2 + 2a0 = 0
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a2 = −a0

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1)− 2nan + 2an = 0

Solving for an+2, gives

(5)an+2 = −an(n2 − 3n+ 2)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 0

For n = 3 the recurrence equation gives

2a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

6a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

12a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = −a0x
2 + a1x+ a0 + . . .

Collecting terms, the solution becomes

(3)y =
(
−x2 + 1

)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
−x2 + 1

)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
−x2 + 1

)
y(0) + xy′(0) +O

(
x6)

(2)y =
(
−x2 + 1

)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
−x2 + 1

)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y =
(
−x2 + 1

)
c1 + c2x+O

(
x6)

Verified OK.
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);� �

y(x) = y(0) +D(y) (0)x− x2y(0)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 18� �
AsymptoticDSolveValue[(1+x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
1− x2)+ c2x
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1.8 problem 7.2.8 part(a)
Internal problem ID [5510]
Internal file name [OUTPUT/4758_Sunday_June_05_2022_03_05_04_PM_60342664/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.8 part(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

(
x2 + 1

)
y′′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

70



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (20)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (21)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y

x2 + 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −x2y′ + 2xy − y′

(x2 + 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 4y′x3 − 5yx2 + 4xy′ + 3y
(x2 + 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (−17x4 − 10x2 + 7) y′ + 16yx(x2 − 2)
(x2 + 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (84x5 − 24x3 − 108x) y′ + (−63x4 + 282x2 − 39) y
(x2 + 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = 3y(0)
F3 = 7y′(0)
F4 = −39y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

8x
4 − 13

240x
6
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

x2 + 1
)
y′′ + y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(
x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=2

xnann(n− 1)
)

+
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

anx
n

)
= 0
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n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

n = 1 gives
6a3 + a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −a1
6

For 2 ≤ n, the recurrence equation is

(4)nan(n− 1) + (n+ 2) an+2(n+ 1) + an = 0

Solving for an+2, gives

(5)an+2 = −an(n2 − n+ 1)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

3a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
8

For n = 3 the recurrence equation gives

7a3 + 20a5 = 0

Which after substituting the earlier terms found becomes

a5 =
7a1
120
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For n = 4 the recurrence equation gives

13a4 + 30a6 = 0

Which after substituting the earlier terms found becomes

a6 = −13a0
240

For n = 5 the recurrence equation gives

21a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = −7a1
240

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
6a1x

3 + 1
8a0x

4 + 7
120a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

8x
4
)
a0 +

(
x− 1

6x
3 + 7

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

8x
4
)
c1 +

(
x− 1

6x
3 + 7

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

8x
4 − 13

240x
6
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 + 1

8x
4
)
c1 +

(
x− 1

6x
3 + 7

120x
5
)
c2 +O

(
x6)
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Verification of solutions

y =
(
1− 1

2x
2 + 1

8x
4 − 13

240x
6
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

8x
4
)
c1 +

(
x− 1

6x
3 + 7

120x
5
)
c2 +O

(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE

<- hypergeometric successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 34� �
Order:=6;
dsolve((x^2+1)*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 + 1

8x
4
)
y(0) +

(
x− 1

6x
3 + 7

120x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[(x^2+1)*y''[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
7x5

120 − x3

6 + x

)
+ c1

(
x4

8 − x2

2 + 1
)
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1.9 problem 7.2.8 part(b)
1.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [5511]
Internal file name [OUTPUT/4759_Sunday_June_05_2022_03_05_05_PM_12112889/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.8 part(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y = 0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at x = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t = x− 1

The ode is converted to be in terms of the new independent variable t. This results in

(t+ 1)
(

d2

dt2
y(t)

)
+ y(t) = 0

With its expansion point and initial conditions now at t = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.

Let
y′′ = f(x, y, y′)

79



Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (23)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (24)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = − y(t)
t+ 1

F1 =
dF0

dt

= ∂F0

∂t
+ ∂F0

∂y

d

dt
y(t) + ∂F0

∂ d
dt
y (t)

F0

=
(−t− 1)

(
d
dt
y(t)

)
+ y(t)

(t+ 1)2

F2 =
dF1

dt

= ∂F1

∂t
+ ∂F1

∂y

d

dt
y(t) + ∂F1

∂ d
dt
y (t)

F1

=
(2t+ 2)

(
d
dt
y(t)

)
+ y(t) (t− 1)

(t+ 1)3

F3 =
dF2

dt

= ∂F2

∂t
+ ∂F2

∂y

d

dt
y(t) + ∂F2

∂ d
dt
y (t)

F2

=
(t2 − 4t− 5)

(
d
dt
y(t)

)
+ (−4t+ 2) y(t)

(t+ 1)4

F4 =
dF3

dt

= ∂F3

∂t
+ ∂F3

∂y

d

dt
y(t) + ∂F3

∂ d
dt
y (t)

F3

=
(−6t2 + 12t+ 18)

(
d
dt
y(t)

)
− y(t) (t2 − 16t+ 7)

(t+ 1)5

And so on. Evaluating all the above at initial conditions t = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = y(0)− y′(0)
F2 = 2y′(0)− y(0)
F3 = 2y(0)− 5y′(0)
F4 = −7y(0) + 18y′(0)
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Substituting all the above in (7) and simplifying gives the solution as

y(t) =
(
1− 1

2t
2 + 1

6t
3 − 1

24t
4 + 1

60t
5 − 7

720t
6
)
y(0)

+
(
t− 1

6t
3 + 1

12t
4 − 1

24t
5 + 1

40t
6
)
y′(0) +O

(
t6
)

Since the expansion point t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(t+ 1)
(

d2

dt2
y(t)

)
+ y(t) = 0

Let the solution be represented as power series of the form

y(t) =
∞∑
n=0

ant
n

Then
d

dt
y(t) =

∞∑
n=1

nant
n−1

d2

dt2
y(t) =

∞∑
n=2

n(n− 1) antn−2

Substituting the above back into the ode gives

(t+ 1)
(

∞∑
n=2

n(n− 1) antn−2

)
+
(

∞∑
n=0

ant
n

)
= 0 (1)

Which simplifies to

(2)
(

∞∑
n=2

n tn−1an(n− 1)
)

+
(

∞∑
n=2

n(n− 1) antn−2

)
+
(

∞∑
n=0

ant
n

)
= 0

The next step is to make all powers of t be n in each summation term. Going over each
summation term above with power of t in it which is not already tn and adjusting the
power and the corresponding index gives

∞∑
n =2

n tn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1n tn

∞∑
n =2

n(n− 1) antn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1) tn
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Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(3)
(

∞∑
n=1

(n+ 1) an+1n tn

)
+
(

∞∑
n=0

(n+ 2) an+2(n+ 1) tn
)

+
(

∞∑
n=0

ant
n

)
= 0

n = 0 gives
2a2 + a0 = 0

a2 = −a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n+ (n+ 2) an+2(n+ 1) + an = 0

Solving for an+2, gives

(5)

an+2 = −n2an+1 + nan+1 + an
(n+ 2) (n+ 1)

= − an
(n+ 2) (n+ 1) −

(n2 + n) an+1

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 + 6a3 + a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6 − a1

6

For n = 2 the recurrence equation gives

6a3 + 12a4 + a2 = 0

Which after substituting the earlier terms found becomes

a4 = −a0
24 + a1

12
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For n = 3 the recurrence equation gives

12a4 + 20a5 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
60 − a1

24

For n = 4 the recurrence equation gives

20a5 + 30a6 + a4 = 0

Which after substituting the earlier terms found becomes

a6 = −7a0
720 + a1

40

For n = 5 the recurrence equation gives

30a6 + 42a7 + a5 = 0

Which after substituting the earlier terms found becomes

a7 =
11a0
1680 − 17a1

1008

And so on. Therefore the solution is

y(t) =
∞∑
n=0

ant
n

= a3t
3 + a2t

2 + a1t+ a0 + . . .

Substituting the values for an found above, the solution becomes

y(t) = a0 + a1t−
a0t

2

2 +
(a0
6 − a1

6

)
t3 +

(
−a0
24 + a1

12

)
t4 +

(a0
60 − a1

24

)
t5 + . . .

Collecting terms, the solution becomes

(3)y(t) =
(
1− 1

2t
2 + 1

6t
3 − 1

24t
4 + 1

60t
5
)
a0 +

(
t− 1

6t
3 + 1

12t
4 − 1

24t
5
)
a1 +O

(
t6
)
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At t = 0 the solution above becomes

y(t) =
(
1− 1

2t
2 + 1

6t
3 − 1

24t
4 + 1

60t
5
)
c1 +

(
t− 1

6t
3 + 1

12t
4 − 1

24t
5
)
c2 +O

(
t6
)

Replacing t in the above with the original independent variable xsusing t = x−1 results
in

y =
(
1− (x− 1)2

2 + (x− 1)3

6 − (x− 1)4

24 + (x− 1)5

60 − 7(x− 1)6

720

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)4

12 − (x− 1)5

24 + (x− 1)6

40

)
y′(1) +O

(
(x− 1)6

)
Summary
The solution(s) found are the following

(1)
y =

(
1− (x− 1)2

2 + (x− 1)3

6 − (x− 1)4

24 + (x− 1)5

60 − 7(x− 1)6

720

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)4

12 − (x− 1)5

24 + (x− 1)6

40

)
y′(1) +O

(
(x− 1)6

)
Verification of solutions

y =
(
1− (x− 1)2

2 + (x− 1)3

6 − (x− 1)4

24 + (x− 1)5

60 − 7(x− 1)6

720

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)4

12 − (x− 1)5

24 + (x− 1)6

40

)
y′(1) +O

(
(x− 1)6

)
Verified OK.

1.9.1 Maple step by step solution

Let’s solve
y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0
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• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = − ak

(k+1)k

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − ak

(k+1)k , bk+1 = − bk
(k+2)(k+1)

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
Order:=6;
dsolve(x*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=1);� �

y(x) =
(
1− (x− 1)2

2 + (x− 1)3

6 − (x− 1)4

24 + (x− 1)5

60

)
y(1)

+
(
x− 1− (x− 1)3

6 + (x− 1)4

12 − (x− 1)5

24

)
D(y) (1) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78� �
AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],{x,1,5}]� �

y(x) → c1

(
1
60(x− 1)5 − 1

24(x− 1)4 + 1
6(x− 1)3 − 1

2(x− 1)2 + 1
)

+ c2

(
− 1
24(x− 1)5 + 1

12(x− 1)4 − 1
6(x− 1)3 + x− 1

)
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1.10 problem 7.2.101
1.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 96

Internal problem ID [5512]
Internal file name [OUTPUT/4760_Sunday_June_05_2022_03_05_06_PM_24258052/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.101.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + 2yx3 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (26)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (27)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2yx3

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −2x2(xy′ + 3y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −12x2y′ + 4xy
(
x5 − 3

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 4
(
x6 − 9x

)
y′ + 12y

(
4x5 − 1

)
F4 =

dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −8yx9 + 72y′x5 + 312yx4 − 48y′

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 0
F3 = −12y(0)
F4 = −48y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− x5

10

)
y(0) +

(
x− 1

15x
6
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −2
(

∞∑
n=0

anx
n

)
x3 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

2xn+3an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

2xn+3an =
∞∑
n=3

2an−3x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=3

2an−3x
n

)
= 0

For 3 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + 2an−3 = 0
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Solving for an+2, gives

(5)an+2 = − 2an−3

(n+ 2) (n+ 1)

For n = 3 the recurrence equation gives

20a5 + 2a0 = 0

Which after substituting the earlier terms found becomes

a5 = −a0
10

For n = 4 the recurrence equation gives

30a6 + 2a1 = 0

Which after substituting the earlier terms found becomes

a6 = −a1
15

For n = 5 the recurrence equation gives

42a7 + 2a2 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
10a0x

5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1− x5

10

)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− x5

10

)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− x5

10

)
y(0) +

(
x− 1

15x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− x5

10

)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1− x5

10

)
y(0) +

(
x− 1

15x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− x5

10

)
c1 + c2x+O

(
x6)

Verified OK.

1.10.1 Maple step by step solution

Let’s solve
y′′ = −2yx3

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2yx3 = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x3 · y to series expansion

x3 · y =
∞∑
k=0

akx
k+3

◦ Shift index using k− >k − 3

x3 · y =
∞∑
k=3

ak−3x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

12a4x2 + 6a3x+ 2a2 +
(

∞∑
k=3

(ak+2(k + 2) (k + 1) + 2ak−3)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0, 12a4 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0, a4 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + 2ak−3 = 0

• Shift index using k− >k + 3(
(k + 3)2 + 3k + 11

)
ak+5 + 2ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+5 = − 2ak

k2+9k+20 , a2 = 0, a3 = 0, a4 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
Order:=6;
dsolve(diff(y(x),x$2)+2*x^3*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− x5

10

)
y(0) +D(y) (0)x+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 20� �
AsymptoticDSolveValue[y''[x]+2*x^3*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1− x5

10

)
+ c2x
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1.11 problem 7.2.102
1.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 99

Internal problem ID [5513]
Internal file name [OUTPUT/4761_Sunday_June_05_2022_03_05_07_PM_54975383/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.102.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_airy", "second_or-
der_bessel_ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − xy = 1
1− x

With initial conditions

[y(0) = 0, y′(0) = 0]

With the expansion point for the power series method at x = 0.

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0
q(x) = −x

F = 1
1− x
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Hence the ode is

y′′ − xy = 1
1− x

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 1
1−x

is

{x < 1∨ 1 < x}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

100



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (29)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (30)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

101



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
yx2 − xy − 1

x− 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x(x− 1)2 y′ + 1 + (x− 1)2 y
(x− 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 2(x− 1)3 y′ + x2(x− 1)3 y − x3 + 2x2 − x− 2
(x− 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= x2(x− 1)4 y′ + 4x(x− 1)4 y − 2x3 + 7x2 − 8x+ 9
(x− 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 6x(x− 1)5 y′ + (x3 + 4) (x− 1)5 y − x6 + 4x5 − 6x4 + 6x3 − 9x2 + 10x− 28
(x− 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 0 gives

F0 = 1
F1 = 1
F2 = 2
F3 = 9
F4 = 28

Substituting all the above in (7) and simplifying gives the solution as

y = x2

2 + x3

6 + x4

12 + 3x5

40 + 7x6

180 +O
(
x6)
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y = x2

2 + x3

6 + x4

12 + 3x5

40 + 7x6

180 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 =

(
∞∑
n=0

anx
n

)
x2 − x

(
∞∑
n=0

anx
n

)
− 1

x− 1 (1)

Expanding − 1
x−1 as Taylor series around x = 0 and keeping only the first 6 terms gives

− 1
x− 1 = x5 + x4 + x3 + x2 + x+ 1 + . . .

= x5 + x4 + x3 + x2 + x+ 1

Hence the ODE in Eq (1) becomes

(
∞∑
n=2

n(n− 1) anxn−2

)
− x

(
∞∑
n=0

anx
n

)
= x5 + x4 + x3 + x2 + x+ 1

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(
−x1+nan

)
= x5 + x4 + x3 + x2 + x+ 1

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
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power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+

∞∑
n =1

(−an−1x
n) = x5 + x4 + x3 + x2 + x+ 1

n = 0 gives
(2a2) 1 = 1

2a2 = 1

Or

a2 =
1
2

For 1 ≤ n, the recurrence equation is

(4)((n+ 2) an+2(1 + n)− an−1)xn = x5 + x4 + x3 + x2 + x+ 1

For n = 1 the recurrence equation gives

(6a3 − a0)x = x

6a3 − a0 = 1

Which after substituting the earlier terms found becomes

a3 =
1
6 + a0

6

For n = 2 the recurrence equation gives

(12a4 − a1)x2 = x2

12a4 − a1 = 1
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Which after substituting the earlier terms found becomes

a4 =
1
12 + a1

12

For n = 3 the recurrence equation gives

(20a5 − a2)x3 = x3

20a5 − a2 = 1

Which after substituting the earlier terms found becomes

a5 =
3
40

For n = 4 the recurrence equation gives

(30a6 − a3)x4 = x4

30a6 − a3 = 1

Which after substituting the earlier terms found becomes

a6 =
7
180 + a0

180

For n = 5 the recurrence equation gives

(42a7 − a4)x5 = x5

42a7 − a4 = 1

Which after substituting the earlier terms found becomes

a7 =
13
504 + a1

504

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x+ x2

2 +
(
1
6 + a0

6

)
x3 +

(
1
12 + a1

12

)
x4 + 3x5

40 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x3

6

)
a0 +

(
x+ 1

12x
4
)
a1 +

x2

2 + x3

6 + x4

12 + 3x5

40 +O
(
x6)

At x = 0 the solution above becomes

y =
(
1 + x3

6

)
c1 +

(
x+ 1

12x
4
)
c2 +

x2

2 + x3

6 + x4

12 + 3x5

40 +O
(
x6)

y = x2

2 + x3

6 + x4

12 + 3x5

40 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = x2

2 + x3

6 + x4

12 + 3x5

40 + 7x6

180 +O
(
x6)

(2)y = x2

2 + x3

6 + x4

12 + 3x5

40 +O
(
x6)

Verification of solutions

y = x2

2 + x3

6 + x4

12 + 3x5

40 + 7x6

180 +O
(
x6)

Verified OK.

y = x2

2 + x3

6 + x4

12 + 3x5

40 +O
(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
Order:=6;
dsolve([diff(y(x),x$2)-x*y(x)=1/(1-x),y(0) = 0, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 1
2x

2 + 1
6x

3 + 1
12x

4 + 3
40x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 56� �
AsymptoticDSolveValue[{y''[x]-x*y[x]==1/(1-x),{}},y[x],{x,0,5}]� �

y(x) → 3x5

40 + x4

12 + c2

(
x4

12 + x

)
+ x3

6 + c1

(
x3

6 + 1
)
+ x2

2
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1.12 problem 7.2.103
1.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 117

Internal problem ID [5514]
Internal file name [OUTPUT/4762_Sunday_June_05_2022_03_05_09_PM_82704742/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.103.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − y = 0
The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = − 1
x2

Table 9: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = − 1
x2

singularity type
x = 0 “regular”
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Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
−

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− a0x
r = 0

Or
(xrr(−1 + r)− xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2 +

√
5
2

r2 =
1
2 −

√
5
2

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 =
√
5 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2+
√
5
2

y2(x) =
∞∑
n=0

bnx
n+ 1

2−
√
5

2
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We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 0 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an = 0

Solving for an from recursive equation (4) gives

an = 0 (4)

Which for the root r = 1
2 +

√
5
2 becomes

an = 0 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 +
√
5
2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
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For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0
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Using the above table, then the solution y1(x) is

y1(x) = x
1
2+

√
5

2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
2+

√
5

2
(
1 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 0 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− bn = 0

Solving for bn from recursive equation (4) gives

bn = 0 (4)

Which for the root r = 1
2 −

√
5
2 becomes

bn = 0 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 −
√
5
2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0

For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
2+

√
5

2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
2−

√
5

2
(
1 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
2+

√
5

2
(
1 +O

(
x6))+ c2x

1
2−

√
5

2
(
1 +O

(
x6))

Hence the final solution is

y = yh

= c1x
1
2+

√
5

2
(
1 +O

(
x6))+ c2x

1
2−

√
5

2
(
1 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1
2+

√
5
2
(
1 +O

(
x6))+ c2x

1
2−

√
5
2
(
1 +O

(
x6))

Verification of solutions

y = c1x
1
2+

√
5
2
(
1 +O

(
x6))+ c2x

1
2−

√
5
2
(
1 +O

(
x6))

Verified OK.
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1.12.1 Maple step by step solution

Let’s solve
x2y′′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 1 = 0
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• Use quadratic formula to solve for r

r =
1±

(√
5
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

√
5
2 , 12 +

√
5
2

)
• 1st solution of the ODE

y1(t) = e
(

1
2−

√
5
2

)
t

• 2nd solution of the ODE

y2(t) = e
(

1
2+

√
5
2

)
t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions

y(t) = c1e
(

1
2−

√
5
2

)
t + c2e

(
1
2+

√
5
2

)
t

• Change variables back using t = ln (x)

y = c1e
(

1
2−

√
5

2

)
ln(x) + c2eln(x)

(
1
2+

√
5

2

)
• Simplify

y =
√
x
(
x−

√
5

2 c1 + x
√
5

2 c2
)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x
(
x−

√
5

2 c1 + x
√
5

2 c2
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38� �
AsymptoticDSolveValue[x^2*y''[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
1
2

(
1+

√
5
)
+ c2x

1
2

(
1−

√
5
)
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2.1 problem 7.3.3
2.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 128

Internal problem ID [5515]
Internal file name [OUTPUT/4763_Sunday_June_05_2022_03_05_10_PM_89001034/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ + (1 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ + (1 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 1 + x

x2
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Table 11: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 1+x
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ + (1 + x) y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+ (1 + x)

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

anx
n+r

)
+
(

∞∑
n=1

an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r + a0x
r = 0

Or
(xrr(−1 + r) + xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 + 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 + 1 = 0
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Solving for r gives the roots of the indicial equation as

r1 = i

r2 = −i

Since a0 6= 0 then the indicial equation becomes(
r2 + 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+i

y2(x) =
∞∑
n=0

bnx
n−i

y1(x) is found first. Eq (2B) derived above is now used to find all an coefficients. The
case n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

n2 + 2nr + r2 + 1 (4)

Which for the root r = i becomes

an = − an−1

n (2i+ n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = i and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
r2 + 2r + 2

Which for the root r = i becomes

a1 = −1
5 + 2i

5

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+2r+2 −1
5 +

2i
5

For n = 2, using the above recursive equation gives

a2 =
1

(r2 + 2r + 2) (r2 + 4r + 5)

Which for the root r = i becomes

a2 = − 1
40 − 3i

40

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+2r+2 −1
5 +

2i
5

a2
1

(r2+2r+2)(r2+4r+5) − 1
40 −

3i
40

For n = 3, using the above recursive equation gives

a3 = − 1
(r2 + 2r + 2) (r2 + 4r + 5) (r2 + 6r + 10)
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Which for the root r = i becomes

a3 =
3
520 + 7i

1560
And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+2r+2 −1
5 +

2i
5

a2
1

(r2+2r+2)(r2+4r+5) − 1
40 −

3i
40

a3 − 1
(r2+2r+2)(r2+4r+5)(r2+6r+10)

3
520 +

7i
1560

For n = 4, using the above recursive equation gives

a4 =
1

(r2 + 2r + 2) (r2 + 4r + 5) (r2 + 6r + 10) (r2 + 8r + 17)

Which for the root r = i becomes

a4 = − 1
2496 − i

12480
And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+2r+2 −1
5 +

2i
5

a2
1

(r2+2r+2)(r2+4r+5) − 1
40 −

3i
40

a3 − 1
(r2+2r+2)(r2+4r+5)(r2+6r+10)

3
520 +

7i
1560

a4
1

(r2+2r+2)(r2+4r+5)(r2+6r+10)(r2+8r+17) − 1
2496 −

i
12480

For n = 5, using the above recursive equation gives

a5 = − 1
(r2 + 2r + 2) (r2 + 4r + 5) (r2 + 6r + 10) (r2 + 8r + 17) (r2 + 10r + 26)

Which for the root r = i becomes

a5 =
9

603200 − i

361920
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And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2+2r+2 −1
5 +

2i
5

a2
1

(r2+2r+2)(r2+4r+5) − 1
40 −

3i
40

a3 − 1
(r2+2r+2)(r2+4r+5)(r2+6r+10)

3
520 +

7i
1560

a4
1

(r2+2r+2)(r2+4r+5)(r2+6r+10)(r2+8r+17) − 1
2496 −

i
12480

a5 − 1
(r2+2r+2)(r2+4r+5)(r2+6r+10)(r2+8r+17)(r2+10r+26)

9
603200 −

i
361920

Using the above table, then the solution y1(x) is

y1(x) = xi
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= xi

(
1 +

(
−1
5 + 2i

5

)
x+

(
− 1
40 − 3i

40

)
x2 +

(
3
520 + 7i

1560

)
x3

+
(
− 1
2496 − i

12480

)
x4 +

(
9

603200 − i

361920

)
x5 +O

(
x6))

The second solution y2(x) is found by taking the complex conjugate of y1(x) which
gives

y2(x) = x−i

(
1 +

(
−1
5 − 2i

5

)
x+

(
− 1
40 + 3i

40

)
x2 +

(
3
520 − 7i

1560

)
x3

+
(
− 1
2496 + i

12480

)
x4 +

(
9

603200 + i

361920

)
x5 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
i

(
1+
(
−1
5+

2i
5

)
x+
(
− 1
40−

3i
40

)
x2+

(
3
520+

7i
1560

)
x3+

(
− 1
2496−

i

12480

)
x4

+
(

9
603200−

i

361920

)
x5+O

(
x6))+c2x

−i

(
1+
(
−1
5−

2i
5

)
x+
(
− 1
40+

3i
40

)
x2

+
(

3
520−

7i
1560

)
x3+

(
− 1
2496 +

i

12480

)
x4+

(
9

603200 +
i

361920

)
x5+O

(
x6))
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Hence the final solution is

y = yh

= c1x
i

(
1+
(
−1
5 +

2i
5

)
x+
(
− 1
40−

3i
40

)
x2+

(
3
520 +

7i
1560

)
x3+

(
− 1
2496−

i

12480

)
x4

+
(

9
603200 − i

361920

)
x5 +O

(
x6))+ c2x

−i

(
1+

(
−1
5 − 2i

5

)
x+

(
− 1
40 + 3i

40

)
x2

+
(

3
520 − 7i

1560

)
x3 +

(
− 1
2496 + i

12480

)
x4 +

(
9

603200 + i

361920

)
x5 +O

(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x
i

(
1 +

(
−1
5 + 2i

5

)
x+

(
− 1
40 − 3i

40

)
x2 +

(
3
520 + 7i

1560

)
x3

+
(
− 1
2496 − i

12480

)
x4 +

(
9

603200 − i

361920

)
x5 +O

(
x6))

+ c2x
−i

(
1 +

(
−1
5 − 2i

5

)
x+

(
− 1
40 + 3i

40

)
x2 +

(
3
520 − 7i

1560

)
x3

+
(
− 1
2496 + i

12480

)
x4 +

(
9

603200 + i

361920

)
x5 +O

(
x6))

Verification of solutions

y= c1x
i

(
1+
(
−1
5+

2i
5

)
x+
(
− 1
40−

3i
40

)
x2+

(
3
520+

7i
1560

)
x3+

(
− 1
2496−

i

12480

)
x4

+
(

9
603200 − i

361920

)
x5 +O

(
x6))+ c2x

−i

(
1+

(
−1
5 − 2i

5

)
x+

(
− 1
40 + 3i

40

)
x2

+
(

3
520 − 7i

1560

)
x3 +

(
− 1
2496 + i

12480

)
x4 +

(
9

603200 + i

361920

)
x5 +O

(
x6))

Verified OK.

2.1.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ + (1 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −y′

x
− (1+x)y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
+ (1+x)y

x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 1+x

x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
x2y′′ + xy′ + (1 + x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion
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x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(r2 + 1)xr +
(

∞∑
k=1

(ak(k2 + 2kr + r2 + 1) + ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 + 1 = 0

• Values of r that satisfy the indicial equation
r ∈ {−I, I}

• Each term in the series must be 0, giving the recursion relation
ak(k2 + 2kr + r2 + 1) + ak−1 = 0

• Shift index using k− >k + 1
ak+1

(
(k + 1)2 + 2(k + 1) r + r2 + 1

)
+ ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

k2+2kr+r2+2k+2r+2

• Recursion relation for r = −I
ak+1 = − ak

k2−2 Ik+1−2 I+2k

• Solution for r = −I[
y =

∞∑
k=0

akx
k−I, ak+1 = − ak

k2−2 Ik+1−2 I+2k

]
• Recursion relation for r = I

ak+1 = − ak
k2+2 Ik+1+2 I+2k

• Solution for r = I[
y =

∞∑
k=0

akx
k+I, ak+1 = − ak

k2+2 Ik+1+2 I+2k

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−I
)
+
(

∞∑
k=0

bkx
k+I
)
, ak+1 = − ak

k2−2 Ik+1−2 I+2k , bk+1 = − bk
k2+2 Ik+1+2 I+2k

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 69� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
−i

(
1 +

(
−1
5 − 2i

5

)
x+

(
− 1
40 + 3i

40

)
x2 +

(
3
520 − 7i

1560

)
x3

+
(
− 1
2496 + i

12480

)
x4 +

(
9

603200 + i

361920

)
x5 +O

(
x6))

+ c2x
i

(
1 +

(
−1
5 + 2i

5

)
x+

(
− 1
40 − 3i

40

)
x2 +

(
3
520 + 7i

1560

)
x3

+
(
− 1
2496 − i

12480

)
x4 +

(
9

603200 − i

361920

)
x5 +O

(
x6))

131



3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 90� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) →

(
1

12480 + i

2496

)
c2x

−i
(
ix4 − (8 + 16i)x3 + (168 + 96i)x2 − (1056− 288i)x

+ (480− 2400i)
)
−
(

1
2496 + i

12480

)
c1x

i
(
x4 − (16 + 8i)x3 + (96 + 168i)x2

+ (288− 1056i)x− (2400− 480i)
)
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2.2 problem 7.3.4
2.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 141

Internal problem ID [5516]
Internal file name [OUTPUT/4764_Sunday_June_05_2022_03_05_15_PM_79439406/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = − 1
x2
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Table 13: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = − 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
−

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− a0x
r = 0

Or
(xrr(−1 + r)− xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2 +

√
5
2

r2 =
1
2 −

√
5
2

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 =
√
5 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
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Or

y1(x) =
∞∑
n=0

anx
n+ 1

2+
√
5
2

y2(x) =
∞∑
n=0

bnx
n+ 1

2−
√
5

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 0 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an = 0

Solving for an from recursive equation (4) gives

an = 0 (4)

Which for the root r = 1
2 +

√
5
2 becomes

an = 0 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 +
√
5
2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
1
2+

√
5

2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
2+

√
5

2
(
1 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 0 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− bn = 0

Solving for bn from recursive equation (4) gives

bn = 0 (4)

Which for the root r = 1
2 −

√
5
2 becomes

bn = 0 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 −
√
5
2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
2+

√
5

2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
2−

√
5

2
(
1 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
2+

√
5

2
(
1 +O

(
x6))+ c2x

1
2−

√
5

2
(
1 +O

(
x6))

Hence the final solution is

y = yh

= c1x
1
2+

√
5

2
(
1 +O

(
x6))+ c2x

1
2−

√
5

2
(
1 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1
2+

√
5
2
(
1 +O

(
x6))+ c2x

1
2−

√
5
2
(
1 +O

(
x6))

Verification of solutions

y = c1x
1
2+

√
5
2
(
1 +O

(
x6))+ c2x

1
2−

√
5
2
(
1 +O

(
x6))

Verified OK.
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2.2.1 Maple step by step solution

Let’s solve
x2y′′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 1 = 0
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• Use quadratic formula to solve for r

r =
1±

(√
5
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

√
5
2 , 12 +

√
5
2

)
• 1st solution of the ODE

y1(t) = e
(

1
2−

√
5
2

)
t

• 2nd solution of the ODE

y2(t) = e
(

1
2+

√
5
2

)
t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions

y(t) = c1e
(

1
2−

√
5
2

)
t + c2e

(
1
2+

√
5
2

)
t

• Change variables back using t = ln (x)

y = c1e
(

1
2−

√
5

2

)
ln(x) + c2eln(x)

(
1
2+

√
5

2

)
• Simplify

y =
√
x
(
x−

√
5

2 c1 + x
√
5

2 c2
)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x
(
x−

√
5

2 c1 + x
√
5

2 c2
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 38� �
AsymptoticDSolveValue[x^2*y''[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
1
2

(
1+

√
5
)
+ c2x

1
2

(
1−

√
5
)
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2.3 problem 7.3.5
2.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 150

Internal problem ID [5517]
Internal file name [OUTPUT/4765_Sunday_June_05_2022_03_05_17_PM_81539624/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ + y′

x
− xy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′ + y′

x
− xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = −x
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Table 15: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = −x

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−yx2 + y′′x+ y′ = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

−

(
∞∑
n=0

anx
n+r

)
x2+

(
∞∑
n=0

(n+r) (n+r−1) anxn+r−2

)
x+
(

∞∑
n=0

(n+r) anxn+r−1

)
= 0

(1)

Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−x2+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x2+n+ran

)
=

∞∑
n=3

(
−an−3x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r− 1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =3

(
−an−3x

n+r−1) = 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr2 = 0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

For 3 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r)− an−3 = 0

Solving for an from recursive equation (4) gives

an = an−3

n2 + 2nr + r2
(4)

Which for the root r = 0 becomes

an = an−3

n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 =
1

(r + 3)2

Which for the root r = 0 becomes
a3 =

1
9

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3

1
(r+3)2

1
9

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3

1
(r+3)2

1
9

a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3

1
(r+3)2

1
9

a4 0 0
a5 0 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x3

9 +O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table

n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 0 0 0 0
b3

1
(r+3)2

1
9 − 2

(r+3)3 − 2
27

b4 0 0 0 0
b5 0 0 0 0
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The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + x3

9 +O
(
x6)) ln (x)− 2x3

27 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1

(
1 + x3

9 +O
(
x6))+ c2

((
1 + x3

9 +O
(
x6)) ln (x)− 2x3

27 +O
(
x6))

Hence the final solution is

y = yh

= c1

(
1 + x3

9 +O
(
x6))+ c2

((
1 + x3

9 +O
(
x6)) ln (x)− 2x3

27 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1

(
1 + x3

9 +O
(
x6))+ c2

((
1 + x3

9 +O
(
x6)) ln (x)− 2x3

27 +O
(
x6))

Verification of solutions

y = c1

(
1 + x3

9 +O
(
x6))+ c2

((
1 + x3

9 +O
(
x6)) ln (x)− 2x3

27 +O
(
x6))

Verified OK.

2.3.1 Maple step by step solution

Let’s solve
−yx2 + y′′x+ y′ = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = −y′

x
+ xy

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− xy = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = −x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
−yx2 + y′′x+ y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+r+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1
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y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r + a1(1 + r)2 xr + a2(2 + r)2 x1+r +

(
∞∑
k=2

(
ak+1(k + 1 + r)2 − ak−2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• The coefficients of each power of x must be 0[
a1(1 + r)2 = 0, a2(2 + r)2 = 0

]
• Solve for the dependent coefficient(s)

{a1 = 0, a2 = 0}
• Each term in the series must be 0, giving the recursion relation

ak+1(k + 1)2 − ak−2 = 0
• Shift index using k− >k + 2

ak+3(k + 3)2 − ak = 0
• Recursion relation that defines series solution to ODE

ak+3 = ak
(k+3)2

• Recursion relation for r = 0
ak+3 = ak

(k+3)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+3 = ak

(k+3)2 , a1 = 0, a2 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 35� �
Order:=6;
dsolve(diff(y(x),x$2)+1/x*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + 1

9x
3 +O

(
x6))+

(
− 2
27x

3 +O
(
x6)) c2

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 39� �
AsymptoticDSolveValue[y''[x]+1/x*y'[x]-x*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x3

9 + 1
)
+ c2

((
x3

9 + 1
)
log(x)− 2x3

27

)
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2.4 problem 7.3.6
2.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 162

Internal problem ID [5518]
Internal file name [OUTPUT/4766_Sunday_June_05_2022_03_05_18_PM_92144177/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

2y′′x+ y′ − yx2 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2y′′x+ y′ − yx2 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
2x

q(x) = −x

2
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Table 17: Table p(x), q(x) singularites.

p(x) = 1
2x

singularity type
x = 0 “regular”

q(x) = −x
2

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2y′′x+ y′ − yx2 = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

2
(

∞∑
n=0

(n+ r) (n+ r−1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
x2 = 0

(1)

Which simplifies to(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−x2+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−x2+n+ran

)
=

∞∑
n=3

(
−an−3x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r−1)
)
+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =3

(
−an−3x

n+r−1)= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−1 + 2r) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−1 + 2r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

For 3 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1) + an(n+ r)− an−3 = 0

Solving for an from recursive equation (4) gives

an = an−3

2n2 + 4nr + 2r2 − n− r
(4)

Which for the root r = 1
2 becomes

an = an−3

2n2 + n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 =
1

2r2 + 11r + 15

Which for the root r = 1
2 becomes

a3 =
1
21

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3

1
2r2+11r+15

1
21

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3

1
2r2+11r+15

1
21

a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3

1
2r2+11r+15

1
21

a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + x3

21 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

Substituting n = 2 in Eq. (2B) gives

b2 = 0

For 3 ≤ n the recursive equation is

(3)2bn(n+ r) (n+ r − 1) + (n+ r) bn − bn−3 = 0

Solving for bn from recursive equation (4) gives

bn = bn−3

2n2 + 4nr + 2r2 − n− r
(4)

Which for the root r = 0 becomes

bn = bn−3

n (2n− 1) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 =
1

2r2 + 11r + 15

Which for the root r = 0 becomes
b3 =

1
15

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3

1
2r2+11r+15

1
15

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3

1
2r2+11r+15

1
15

b4 0 0

For n = 5, using the above recursive equation gives

b5 = 0
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And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3

1
2r2+11r+15

1
15

b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + x3

15 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1 + x3

21 +O
(
x6))+ c2

(
1 + x3

15 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1 + x3

21 +O
(
x6))+ c2

(
1 + x3

15 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1 + x3

21 +O
(
x6))+ c2

(
1 + x3

15 +O
(
x6))

Verification of solutions

y = c1
√
x

(
1 + x3

21 +O
(
x6))+ c2

(
1 + x3

15 +O
(
x6))

Verified OK.
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2.4.1 Maple step by step solution

Let’s solve
2y′′x+ y′ − yx2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y′

2x + xy
2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

2x − xy
2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
2x , P3(x) = −x

2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ y′ − yx2 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+r+2

◦ Shift index using k− >k − 2
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x2 · y =
∞∑
k=2

ak−2x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 2r)x−1+r + a1(1 + r) (1 + 2r)xr + a2(2 + r) (3 + 2r)x1+r +
(

∞∑
k=2

(ak+1(k + 1 + r) (2k + 1 + 2r)− ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• The coefficients of each power of x must be 0
[a1(1 + r) (1 + 2r) = 0, a2(2 + r) (3 + 2r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0}

• Each term in the series must be 0, giving the recursion relation
2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 − ak−2 = 0

• Shift index using k− >k + 2
2
(
k + 5

2 + r
)
(k + 3 + r) ak+3 − ak = 0

• Recursion relation that defines series solution to ODE
ak+3 = ak

(2k+5+2r)(k+3+r)

• Recursion relation for r = 0
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ak+3 = ak
(2k+5)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+3 = ak

(2k+5)(k+3) , a1 = 0, a2 = 0
]

• Recursion relation for r = 1
2

ak+3 = ak
(2k+6)

(
k+ 7

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+3 = ak
(2k+6)

(
k+ 7

2
) , a1 = 0, a2 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+3 = ak

(2k+5)(k+3) , a1 = 0, a2 = 0, bk+3 = bk
(2k+6)

(
k+ 7

2
) , b1 = 0, b2 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)+diff(y(x),x)-x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1 + 1

21x
3 +O

(
x6))+ c2

(
1 + 1

15x
3 +O

(
x6))

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 33� �
AsymptoticDSolveValue[2*x*y''[x]+y'[x]-x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
√
x

(
x3

21 + 1
)
+ c2

(
x3

15 + 1
)
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2.5 problem 7.3.7
2.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 174

Internal problem ID [5519]
Internal file name [OUTPUT/4767_Sunday_June_05_2022_03_05_20_PM_2529632/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − xy′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − xy′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1
x

q(x) = − 1
x2
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Table 19: Table p(x), q(x) singularites.

p(x) = − 1
x

singularity type
x = 0 “regular”

q(x) = − 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − xy′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

x2

(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
− x

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−anx

n+r
)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r − a0x
r = 0

Or
(xrr(−1 + r)− xrr − xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − 2r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − 2r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1 +
√
2

r2 = 1−
√
2

Since a0 6= 0 then the indicial equation becomes(
r2 − 2r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2
√
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
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Or

y1(x) =
∞∑
n=0

anx
n+1+

√
2

y2(x) =
∞∑
n=0

bnx
n+1−

√
2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 0 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an(n+ r)− an = 0

Solving for an from recursive equation (4) gives

an = 0 (4)

Which for the root r = 1 +
√
2 becomes

an = 0 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 +

√
2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x1+
√
2(a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x1+
√
2(1 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 0 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− bn(n+ r)− bn = 0

Solving for bn from recursive equation (4) gives

bn = 0 (4)

Which for the root r = 1−
√
2 becomes

bn = 0 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1−

√
2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x1+
√
2(b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x1−
√
2(1 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1+

√
2(1 +O

(
x6))+ c2x

1−
√
2(1 +O

(
x6))

Hence the final solution is

y = yh

= c1x
1+

√
2(1 +O

(
x6))+ c2x

1−
√
2(1 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1+

√
2(1 +O

(
x6))+ c2x

1−
√
2(1 +O

(
x6))

Verification of solutions

y = c1x
1+

√
2(1 +O

(
x6))+ c2x

1−
√
2(1 +O

(
x6))

Verified OK.
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2.5.1 Maple step by step solution

Let’s solve
x2y′′ − xy′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

x
+ y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

x
− y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − xy′ − y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− d

dt
y(t)− y(t) = 0

• Simplify
d2

dt2
y(t)− 2 d

dt
y(t)− y(t) = 0

• Characteristic polynomial of ODE
r2 − 2r − 1 = 0
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• Use quadratic formula to solve for r

r =
2±

(√
8
)

2

• Roots of the characteristic polynomial
r =

(
1−

√
2, 1 +

√
2
)

• 1st solution of the ODE

y1(t) = e
(
1−

√
2
)
t

• 2nd solution of the ODE

y2(t) = e
(
1+

√
2
)
t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions

y(t) = c1e
(
1−

√
2
)
t + c2e

(
1+

√
2
)
t

• Change variables back using t = ln (x)

y = c1e
(
1−

√
2
)
ln(x) + c2e

(
1+

√
2
)
ln(x)

• Simplify

y = x
(
x
√
2c2 + x−

√
2c1
)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 37� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) = x
(
x−

√
2c1 + x

√
2c2
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
AsymptoticDSolveValue[x^2*y''[x]-x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
1+

√
2 + c2x

1−
√
2
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2.6 problem 7.3.8 (a)
2.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 189

Internal problem ID [5520]
Internal file name [OUTPUT/4768_Sunday_June_05_2022_03_05_21_PM_17524057/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.8 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2(x2 + 1
)
y′′ + xy = 0

With the expansion point for the power series method at x = 0.

The ODE is (
x4 + x2) y′′ + xy = 0

Or
x
(
y′′x3 + y′′x+ y

)
= 0

For x 6= 0 the above simplifies to (
x3 + x

)
y′′ + y = 0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x4 + x2) y′′ + xy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0
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Where

p(x) = 0

q(x) = 1
x (x2 + 1)

Table 21: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x(x2+1)

singularity type
x = 0 “regular”
x = −i “regular”
x = i “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,−i, i,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2(x2 + 1
)
y′′ + xy = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above back into the ode gives

(1)x2(x2 + 1
)( ∞∑

n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+ x

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

xn+r+2an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an(n+ r) (n+ r − 1) =
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=2

an−2(n+ r − 2) (n− 3 + r)xn+r

)

+
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

xra0r(−1 + r) = 0
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Or
xra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

xrr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

xrr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
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Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = − 1
r (1 + r)

For 2 ≤ n the recursive equation is

(3)an−2(n+ r − 2) (n− 3 + r) + an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = −n2an−2 + 2nran−2 + r2an−2 − 5nan−2 − 5ran−2 + 6an−2 + an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = −n2an−2 + 3nan−2 − 2an−2 − an−1

(1 + n)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

For n = 2, using the above recursive equation gives

a2 =
−r4 + r2 + 1

r (1 + r)2 (2 + r)

Which for the root r = 1 becomes
a2 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−r4+r2+1

r(1+r)2(2+r)
1
12
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For n = 3, using the above recursive equation gives

a3 =
2r4 + 4r3 + 4r2 + 2r − 1
r (1 + r)2 (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 =
11
144

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−r4+r2+1

r(1+r)2(2+r)
1
12

a3
2r4+4r3+4r2+2r−1
r(1+r)2(2+r)2(3+r)

11
144

For n = 4, using the above recursive equation gives

a4 =
r8 + 8r7 + 22r6 + 20r5 − 14r4 − 40r3 − 39r2 − 30r − 11

r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 = − 83
2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−r4+r2+1

r(1+r)2(2+r)
1
12

a3
2r4+4r3+4r2+2r−1
r(1+r)2(2+r)2(3+r)

11
144

a4
r8+8r7+22r6+20r5−14r4−40r3−39r2−30r−11

r(1+r)2(2+r)2(3+r)2(4+r) − 83
2880

For n = 5, using the above recursive equation gives

a5 =
−3r8 − 36r7 − 180r6 − 486r5 − 773r4 − 750r3 − 400r2 − 12r + 83

r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)
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Which for the root r = 1 becomes

a5 = − 2557
86400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
−r4+r2+1

r(1+r)2(2+r)
1
12

a3
2r4+4r3+4r2+2r−1
r(1+r)2(2+r)2(3+r)

11
144

a4
r8+8r7+22r6+20r5−14r4−40r3−39r2−30r−11

r(1+r)2(2+r)2(3+r)2(4+r) − 83
2880

a5
−3r8−36r7−180r6−486r5−773r4−750r3−400r2−12r+83

r(1+r)2(2+r)2(3+r)2(4+r)2(5+r) − 2557
86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
r (1 + r)

Therefore

lim
r→r2

− 1
r (1 + r) = lim

r→0
− 1
r (1 + r)

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2(x2 + 1) y′′ + xy = 0 gives

x2(x2 + 1
)(

Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

(((
x2 + 1

)
x2y′′1(x) + y1(x)x

)
ln (x) +

(
x2 + 1

)
x2
(
2y′1(x)

x
− y1(x)

x2

))
C

+
(
x2 + 1

)
x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then(
x2 + 1

)
x2y′′1(x) + y1(x)x = 0

Eq (7) simplifes to

(8)

(
x2 + 1

)
x2
(
2y′1(x)

x
− y1(x)

x2

)
C

+
(
x2 + 1

)
x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+ x

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2x
(
x2 + 1

)( ∞∑
n=0

x−1+n+r1an(n+ r1)
)

+
(
−x2 − 1

)( ∞∑
n=0

anx
n+r1

))
C

+
(
x4 + x2)( ∞∑

n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

+ x

(
∞∑
n=0

bnx
n+r2

)
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2x
(
x2 + 1

)( ∞∑
n=0

xnan(1 + n)
)

+
(
−x2 − 1

)( ∞∑
n=0

anx
1+n

))
C

+
(
x4 + x2)( ∞∑

n=0

xn−2bnn(n− 1)
)

+ x

(
∞∑
n=0

bnx
n

)
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xn+3an(1 + n)
)

+
(

∞∑
n=0

2C x1+nan(1 + n)
)

+
∞∑

n =0

(
−C xn+3an

)
+

∞∑
n =0

(
−C x1+nan

)
+
(

∞∑
n=0

nxn+2bn(n− 1)
)

+
(

∞∑
n=0

xnbnn(n− 1)
)

+
(

∞∑
n=0

x1+nbn

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =0

2C xn+3an(1 + n) =
∞∑
n=3

2Can−3(n− 2)xn

∞∑
n =0

2C x1+nan(1 + n) =
∞∑
n=1

2Can−1nxn

∞∑
n =0

(
−C xn+3an

)
=

∞∑
n=3

(−Can−3x
n)

∞∑
n =0

(
−C x1+nan

)
=

∞∑
n=1

(−Can−1x
n)

∞∑
n =0

nxn+2bn(n− 1) =
∞∑
n=2

(n− 2) bn−2(n− 3)xn

∞∑
n =0

x1+nbn =
∞∑
n=1

bn−1x
n

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n.

(2B)

(
∞∑
n=3

2Can−3(n− 2)xn

)
+
(

∞∑
n=1

2Can−1nxn

)
+

∞∑
n =3

(−Can−3x
n)

+
∞∑

n =1

(−Can−1x
n) +

(
∞∑
n=2

(n− 2) bn−2(n− 3)xn

)

+
(

∞∑
n=0

xnbnn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0
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Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

(a0 + 5a2)C + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−13
6 + 6b3 = 0

Solving the above for b3 gives
b3 =

13
36

For n = 4, Eq (2B) gives

(3a1 + 7a3)C + 2b2 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 25
144 + 12b4 = 0

Solving the above for b4 gives
b4 =

25
1728

For n = 5, Eq (2B) gives

(5a2 + 9a4)C + 6b3 + b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8743
4320 + 20b5 = 0
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Solving the above for b5 gives
b5 = − 8743

86400
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 13x3

36 + 25x4

1728 − 8743x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 13x3

36 + 25x4

1728 − 8743x5

86400 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 13x3

36

+ 25x4

1728 − 8743x5

86400 +O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 13x3

36 + 25x4

1728 − 8743x5

86400 +O
(
x6))

Verification of solutions

y = c1x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 + 11x3

144 − 83x4

2880 − 2557x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 13x3

36 + 25x4

1728 − 8743x5

86400 +O
(
x6))

Verified OK.

2.6.1 Maple step by step solution

Let’s solve
x2(x2 + 1) y′′ + xy = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x(x2+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x(x2+1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x(x2+1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x2 + 1) + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r + (a1(1 + r) r + a0)xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r) + ak + ak−1(k + r − 1) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term must be 0
a1(1 + r) r + a0 = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak + ak−1(k + r − 1) (k − 2 + r) = 0

• Shift index using k− >k + 1
ak+2(k + 2 + r) (k + 1 + r) + ak+1 + ak(k + r) (k + r − 1) = 0
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• Recursion relation that defines series solution to ODE

ak+2 = −k2ak+2krak+r2ak−kak−rak+ak+1
(k+2+r)(k+1+r)

• Recursion relation for r = 0

ak+2 = −k2ak−kak+ak+1
(k+2)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −k2ak−kak+ak+1

(k+2)(k+1) , a0 = 0
]

• Recursion relation for r = 1

ak+2 = −k2ak+kak+ak+1
(k+3)(k+2)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −k2ak+kak+ak+1

(k+3)(k+2) , 2a1 + a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −k2ak−kak+ak+1

(k+2)(k+1) , a0 = 0, bk+2 = −k2bk+kbk+bk+1
(k+3)(k+2) , 2b1 + b0 = 0

]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 58� �
Order:=6;
dsolve(x^2*(1+x^2)*diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 + 11
144x

3 − 83
2880x

4 − 2557
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 − 11

144x
4 + 83

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 13

36x
3 + 25

1728x
4 − 8743

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x^2*(1+x^2)*y''[x]+x*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
157x4 + 768x3 − 2160x2 + 1728x+ 1728

1728

− 1
144x

(
11x3 +12x2 − 72x+144

)
log(x)

)
+ c2

(
−83x5

2880 + 11x4

144 + x3

12 − x2

2 + x

)
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2.7 problem 7.3.8 (b)
Internal problem ID [5521]
Internal file name [OUTPUT/4769_Sunday_June_05_2022_03_05_23_PM_14949691/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.8 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

x2y′′ + y′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x2

q(x) = 1
x2
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Table 23: Table p(x), q(x) singularites.

p(x) = 1
x2

singularity type
x = 0 “irregular”

q(x) = 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful`� �
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7 Solution by Maple� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

No solution found

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 84� �
AsymptoticDSolveValue[x^2*y''[x]+y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2e
1
x

(
59241x5

40 + 1911x4

8 + 91x3

2 + 21x2

2 + 3x+ 1
)
x2

+ c1

(
−91x5

40 + 7x4

8 − x3

2 + x2

2 − x+ 1
)
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2.8 problem 7.3.8 (c)
Internal problem ID [5522]
Internal file name [OUTPUT/4770_Sunday_June_05_2022_03_05_24_PM_67992485/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.8 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′x+ y′x3 + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′x+ y′x3 + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x2

q(x) = 1
x
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Table 24: Table p(x), q(x) singularites.

p(x) = x2

singularity type
x = ∞ “regular”
x = −∞ “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞,−∞, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

y′′x+ y′x3 + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
x3 +

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

x2+n+ran(n+r)
)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x2+n+ran(n+ r) =
∞∑
n=3

an−3(n+ r − 3)xn+r−1

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=3

an−3(n+ r − 3)xn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

199



Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = − 1
r (1 + r)

Substituting n = 2 in Eq. (2B) gives

a2 =
1

r (1 + r)2 (2 + r)

For 3 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−3(n+ r − 3) + an−1 = 0
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Solving for an from recursive equation (4) gives

an = −nan−3 + ran−3 − 3an−3 + an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = −nan−3 + 2an−3 − an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
1

r(1+r)2(2+r)
1
12

For n = 3, using the above recursive equation gives

a3 =
−r5 − 4r4 − 5r3 − 2r2 − 1
r (1 + r)2 (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 13
144

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
1

r(1+r)2(2+r)
1
12

a3
−r5−4r4−5r3−2r2−1
r(1+r)2(2+r)2(3+r) − 13

144

For n = 4, using the above recursive equation gives

a4 =
2r5 + 13r4 + 36r3 + 53r2 + 40r + 13
r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)
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Which for the root r = 1 becomes

a4 =
157
2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
1

r(1+r)2(2+r)
1
12

a3
−r5−4r4−5r3−2r2−1
r(1+r)2(2+r)2(3+r) − 13

144

a4
2r5+13r4+36r3+53r2+40r+13
r(1+r)2(2+r)2(3+r)2(4+r)

157
2880

For n = 5, using the above recursive equation gives

a5 =
−3r5 − 27r4 − 113r3 − 261r2 − 316r − 157
r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 877
86400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
1

r(1+r)2(2+r)
1
12

a3
−r5−4r4−5r3−2r2−1
r(1+r)2(2+r)2(3+r) − 13

144

a4
2r5+13r4+36r3+53r2+40r+13
r(1+r)2(2+r)2(3+r)2(4+r)

157
2880

a5
−3r5−27r4−113r3−261r2−316r−157
r(1+r)2(2+r)2(3+r)2(4+r)2(5+r) − 877

86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
r (1 + r)

Therefore

lim
r→r2

− 1
r (1 + r) = lim

r→0
− 1
r (1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode y′′x+ y′x3 + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x3

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
y′1(x)x3 + y′′1(x)x+ y1(x)

)
ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ y1(x)x2

)
C

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x3

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′1(x)x3 + y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ y1(x)x2

)
C +

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x3

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ (x3 − 1)

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x4 +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x+ (x3 − 1)

(
∞∑
n=0

anx
n+1
))

C

x

+

(
∞∑
n=0

xn−1bnn

)
x4 +

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xnan(n+ 1)
)

+
(

∞∑
n=0

C xn+3an

)
+

∞∑
n =0

(−Canx
n)

+
(

∞∑
n=0

nx2+nbn

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

C xn+3an =
∞∑
n=4

Can−4x
n−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
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∞∑
n =0

nx2+nbn =
∞∑
n=3

(n− 3) bn−3x
n−1

∞∑
n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+
(

∞∑
n=4

Can−4x
n−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=3

(n−3) bn−3x
n−1

)
+
(

∞∑
n=0

nxn−1bn(n−1)
)
+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

5Ca2 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
7
6 = 0
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Solving the above for b3 gives
b3 =

7
36

For n = 4, Eq (2B) gives

(a0 + 7a3)C + b1 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 25
144 + 12b4 = 0

Solving the above for b4 gives
b4 =

25
1728

For n = 5, Eq (2B) gives

(a1 + 9a4)C + 2b2 + b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−6377
4320 + 20b5 = 0

Solving the above for b5 gives
b5 =

6377
86400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 7x3

36 + 25x4

1728 + 6377x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 7x3

36 + 25x4

1728 + 6377x5

86400 +O
(
x6))
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Hence the final solution is

y = yh

= c1x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

+ 25x4

1728 + 6377x5

86400 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 7x3

36 + 25x4

1728 + 6377x5

86400 +O
(
x6))

Verification of solutions

y = c1x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − 13x3

144 + 157x4

2880 − 877x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

+ 25x4

1728 + 6377x5

86400 +O
(
x6))

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+x^3*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 − 13
144x

3 + 157
2880x

4 − 877
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 + 13

144x
4 − 157

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 7

36x
3 + 25

1728x
4 + 6377

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 87� �
AsymptoticDSolveValue[x*y''[x]+x^3*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
1
144x

(
13x3 − 12x2 + 72x− 144

)
log(x)

+ −131x4 + 480x3 − 2160x2 + 1728x+ 1728
1728

)
+ c2

(
157x5

2880 − 13x4

144 + x3

12 − x2

2 + x

)
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2.9 problem 7.3.8 (d)
Internal problem ID [5523]
Internal file name [OUTPUT/4771_Sunday_June_05_2022_03_05_27_PM_18805796/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.8 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′x+ xy′ − exy = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′x+ xy′ − exy = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1

q(x) = −ex
x
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Table 25: Table p(x), q(x) singularites.

p(x) = 1
singularity type

q(x) = − ex
x

singularity type
x = 0 “regular”
x = ∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

y′′x+ xy′ − exy = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+x

(
∞∑
n=0

(n+ r) anxn+r−1

)
− ex

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Expanding −ex as Taylor series around x = 0 and keeping only the first 6 terms gives

−ex = −1− x− 1
2x

2 − 1
6x

3 − 1
24x

4 − 1
120x

5 − 1
720x

6 + . . .

= −1− x− 1
2x

2 − 1
6x

3 − 1
24x

4 − 1
120x

5 − 1
720x

6
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

xn+ran(n+r)
)
+

∞∑
n =0

(
−anx

n+r
)

+
∞∑

n =0

(
−x1+n+ran

)
+

∞∑
n =0

(
−xn+r+2an

2

)
+

∞∑
n =0

(
−xn+r+3an

6

)
+

∞∑
n =0

(
−xn+r+4an

24

)
+

∞∑
n =0

(
−xn+r+5an

120

)
+

∞∑
n =0

(
−xn+r+6an

720

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)
∞∑

n =0

(
−x1+n+ran

)
=

∞∑
n=2

(
−an−2x

n+r−1)
∞∑

n =0

(
−xn+r+2an

2

)
=

∞∑
n=3

(
−an−3x

n+r−1

2

)
∞∑

n =0

(
−xn+r+3an

6

)
=

∞∑
n=4

(
−an−4x

n+r−1

6

)
∞∑

n =0

(
−xn+r+4an

24

)
=

∞∑
n=5

(
−an−5x

n+r−1

24

)
∞∑

n =0

(
−xn+r+5an

120

)
=

∞∑
n=6

(
−an−6x

n+r−1

120

)
∞∑

n =0

(
−xn+r+6an

720

)
=

∞∑
n=7

(
−an−7x

n+r−1

720

)
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)

+
∞∑

n =1

(
−an−1x

n+r−1)+ ∞∑
n =2

(
−an−2x

n+r−1)+ ∞∑
n =3

(
−an−3x

n+r−1

2

)
+

∞∑
n =4

(
−an−4x

n+r−1

6

)
+

∞∑
n =5

(
−an−5x

n+r−1

24

)
+

∞∑
n =6

(
−an−6x

n+r−1

120

)
+

∞∑
n =7

(
−an−7x

n+r−1

720

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
1− r

r (1 + r)
Substituting n = 2 in Eq. (2B) gives

a2 =
2r

(1 + r)2 (2 + r)

Substituting n = 3 in Eq. (2B) gives

a3 =
(r − 2)2

2r (2 + r)2 (3 + r)

Substituting n = 4 in Eq. (2B) gives

a4 =
r4 − r3 + 22r2 + 3r + 3

6 (1 + r)2 r (3 + r)2 (4 + r)
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Substituting n = 5 in Eq. (2B) gives

a5 =
r6 + 2r5 + 41r4 + 32r3 + 32r2 + 128r + 112

24 (2 + r)2 r (4 + r)2 (1 + r)2 (5 + r)

Substituting n = 6 in Eq. (2B) gives

a6 =
r8 + 7r7 + 113r6 + 554r5 + 1943r4 + 4807r3 + 5931r2 + 3240r + 1740

120 (3 + r)2 r (5 + r)2 (1 + r)2 (2 + r)2 (6 + r)

For 7 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−1(n+ r − 1)− an−1

− an−2 −
an−3

2 − an−4

6 − an−5

24 − an−6

120 − an−7

720 = 0

Solving for an from recursive equation (4) gives

an = −720nan−1 + 720ran−1 − an−7 − 6an−6 − 30an−5 − 120an−4 − 360an−3 − 720an−2 − 1440an−1

720 (n+ r) (n+ r − 1)
(4)

Which for the root r = 1 becomes

an = −720nan−1 + an−7 + 6an−6 + 30an−5 + 120an−4 + 360an−3 + 720an−2 + 720an−1

720 (1 + n)n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

1−r
r(1+r) 0

a2
2r

(1+r)2(2+r)
1
6

a3
(r−2)2

2r(2+r)2(3+r)
1
72

a4
r4−r3+22r2+3r+3

6(1+r)2r(3+r)2(4+r)
7

480

a5
r6+2r5+41r4+32r3+32r2+128r+112

24(2+r)2r(4+r)2(1+r)2(5+r)
29

10800

a6
r8+7r7+113r6+554r5+1943r4+4807r3+5931r2+3240r+1740

120(3+r)2r(5+r)2(1+r)2(2+r)2(6+r)
191

181440
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Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 1− r

r (1 + r)
Therefore

lim
r→r2

1− r

r (1 + r) = lim
r→0

1− r

r (1 + r)
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode y′′x+ xy′ − exy = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ x

(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

− ex
(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

(
(−exy1(x) + y′1(x)x+ y′′1(x)x) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ y1(x)

)
C

− ex
(

∞∑
n=0

bnx
n+r2

)
+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x = 0

But since y1(x) is a solution to the ode, then

−exy1(x) + y′1(x)x+ y′′1(x)x = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ y1(x)

)
C

− ex
(

∞∑
n=0

bnx
n+r2

)
+ x

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x = 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ (x− 1)

(
∞∑
n=0

anx
n+r1

))
C

x

+
−ex

(
∞∑
n=0

bnx
n+r2

)
x+

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(1 + n)
)
x+ (x− 1)

(
∞∑
n=0

anx
1+n

))
C

x

+
−ex

(
∞∑
n=0

bnx
n

)
x+

(
∞∑
n=0

xn−1bnn

)
x2 +

(
∞∑
n=0

xn−2bnn(n− 1)
)
x2

x
= 0

Expanding −ex as Taylor series around x = 0 and keeping only the first 6 terms gives

−ex = −1− x− 1
2x

2 − 1
6x

3 − 1
24x

4 − 1
120x

5 − 1
720x

6 + . . .

= −1− x− 1
2x

2 − 1
6x

3 − 1
24x

4 − 1
120x

5 − 1
720x

6

Which simplifies to

(2A)

(
∞∑
n=0

2C xnan(1 + n)
)

+
(

∞∑
n=0

C x1+nan

)
+

∞∑
n =0

(−Canx
n)

+
∞∑

n =0

(−bnx
n) +

∞∑
n =0

(
−x1+nbn

)
+

∞∑
n =0

(
−xn+2bn

2

)
+

∞∑
n =0

(
−xn+3bn

6

)
+

∞∑
n =0

(
−xn+4bn

24

)
+

∞∑
n =0

(
−xn+5bn

120

)
+

∞∑
n =0

(
−xn+6bn

720

)
+
(

∞∑
n=0

xnbnn

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

= 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
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adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(1 + n) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

C x1+nan =
∞∑
n=2

Can−2x
n−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)
∞∑

n =0

(
−x1+nbn

)
=

∞∑
n=2

(
−bn−2x

n−1)
∞∑

n =0

(
−xn+2bn

2

)
=

∞∑
n=3

(
−bn−3x

n−1

2

)
∞∑

n =0

(
−xn+3bn

6

)
=

∞∑
n=4

(
−bn−4x

n−1

6

)
∞∑

n =0

(
−xn+4bn

24

)
=

∞∑
n=5

(
−bn−5x

n−1

24

)
∞∑

n =0

(
−xn+5bn

120

)
=

∞∑
n=6

(
−bn−6x

n−1

120

)
∞∑

n =0

(
−xn+6bn

720

)
=

∞∑
n=7

(
−bn−7x

n−1

720

)
∞∑

n =0

xnbnn =
∞∑
n=1

(n− 1) bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+
(

∞∑
n=2

Can−2x
n−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+

∞∑
n =1

(
−bn−1x

n−1)+ ∞∑
n =2

(
−bn−2x

n−1)+ ∞∑
n =3

(
−bn−3x

n−1

2

)
+

∞∑
n =4

(
−bn−4x

n−1

6

)
+

∞∑
n =5

(
−bn−5x

n−1

24

)
+

∞∑
n =6

(
−bn−6x

n−1

120

)
+

∞∑
n =7

(
−bn−7x

n−1

720

)
+
(

∞∑
n=1

(n− 1) bn−1x
n−1

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 1 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 2, Eq (2B) gives
(a0 + 3a1)C − b0 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 = 0

Solving the above for b2 gives
b2 = 0

For n = 3, Eq (2B) gives

(a1 + 5a2)C − b0
2 − b1 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1
3 + 6b3 = 0
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Solving the above for b3 gives
b3 = − 1

18
For n = 4, Eq (2B) gives

(a2 + 7a3)C − b0
6 − b1

2 − b2 + 2b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

− 1
72 + 12b4 = 0

Solving the above for b4 gives
b4 =

1
864

For n = 5, Eq (2B) gives

(a3 + 9a4)C − b0
24 − b1

6 − b2
2 − b3 + 3b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

13
80 + 20b5 = 0

Solving the above for b5 gives
b5 = − 13

1600
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))) ln (x)

+ 1− x3

18 + x4

864 − 13x5

1600 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))

+ c2

(
1
(
x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))) ln (x) + 1− x3

18

+ x4

864 − 13x5

1600 +O
(
x6))
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Hence the final solution is

y = yh

= c1x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))

+ c2

(
x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6)) ln (x) + 1− x3

18 + x4

864

− 13x5

1600 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))

+ c2

(
x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6)) ln (x) + 1− x3

18

+ x4

864 − 13x5

1600 +O
(
x6))

Verification of solutions

y = c1x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6))

+ c2

(
x

(
1 + x2

6 + x3

72 + 7x4

480 + 29x5

10800 + 191x6

181440 +O
(
x6)) ln (x) + 1− x3

18 + x4

864

− 13x5

1600 +O
(
x6))

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 54� �
Order:=6;
dsolve(x*diff(y(x),x$2)+x*diff(y(x),x)-exp(x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1 + 1

6x
2 + 1

72x
3 + 7

480x
4 + 29

10800x
5 +O

(
x6))

+ c2

(
ln (x)

(
x+ 1

6x
3 + 1

72x
4 + 7

480x
5 +O

(
x6))

+
(
1− x− 2

9x
3 − 11

864x
4 − 109

4800x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 70� �
AsymptoticDSolveValue[x*y''[x]+x*y'[x]-Exp[x]*y[x]==0,y[x],{x,0,5}]� �
y(x) → c2

(
7x5

480 + x4

72 + x3

6 + x

)
+ c1

(
1
864
(
−23x4 − 336x3 − 1728x+ 864

)
+ 1

72x
(
x3 + 12x2 + 72

)
log(x)

)
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2.10 problem 7.3.8 (e)
2.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 234

Internal problem ID [5524]
Internal file name [OUTPUT/4772_Sunday_June_05_2022_03_05_29_PM_46121535/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.8 (e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second order series method. Ordinary point", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

x2y′′ + x2y′ + yx2 = 0

With the expansion point for the power series method at x = 0.

Simplyfing the ode gives
y′′ + y′ + y = 0

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (41)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (42)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

227



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y′ − y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= y′

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= −y′ − y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y′(0)− y(0)
F1 = y(0)
F2 = y′(0)
F3 = −y′(0)− y(0)
F4 = y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2+ 1

6x
3− 1

120x
5+ 1

720x
6
)
y(0)+

(
x− 1

2x
2+ 1

24x
4− 1

120x
5
)
y′(0)+O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=1

nanx
n−1

)
−

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(n+ 1) an+1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

(n+ 1) an+1x
n

)
+
(

∞∑
n=0

anx
n

)
= 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + (n+ 1) an+1 + an = 0
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Solving for an+2, gives

(5)

an+2 = −nan+1 + an + an+1

(n+ 2) (n+ 1)

= − an
(n+ 2) (n+ 1) −

an+1

n+ 2

For n = 0 the recurrence equation gives

2a2 + a1 + a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a1
2 − a0

2

For n = 1 the recurrence equation gives

6a3 + 2a2 + a1 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6

For n = 2 the recurrence equation gives

12a4 + 3a3 + a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a1
24

For n = 3 the recurrence equation gives

20a5 + 4a4 + a3 = 0

Which after substituting the earlier terms found becomes

a5 = − a1
120 − a0

120
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For n = 4 the recurrence equation gives

30a6 + 5a5 + a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
720

For n = 5 the recurrence equation gives

42a7 + 6a6 + a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1

5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−a1

2 − a0
2

)
x2 + a0x

3

6 + a1x
4

24 +
(
− a1
120 − a0

120

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

6x
3 − 1

120x
5
)
a0 +

(
x− 1

2x
2 + 1

24x
4 − 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

6x
3 − 1

120x
5
)
c1 +

(
x− 1

2x
2 + 1

24x
4 − 1

120x
5
)
c2 +O

(
x6)
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Summary
The solution(s) found are the following

(1)
y =

(
1− 1

2x
2 + 1

6x
3 − 1

120x
5 + 1

720x
6
)
y(0)

+
(
x− 1

2x
2 + 1

24x
4 − 1

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 + 1

6x
3 − 1

120x
5
)
c1 +

(
x− 1

2x
2 + 1

24x
4 − 1

120x
5
)
c2 +O

(
x6)

Figure 3: Slope field plot

Verification of solutions

y =
(
1− 1

2x
2+ 1

6x
3− 1

120x
5+ 1

720x
6
)
y(0)+

(
x− 1

2x
2+ 1

24x
4− 1

120x
5
)
y′(0)+O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

6x
3 − 1

120x
5
)
c1 +

(
x− 1

2x
2 + 1

24x
4 − 1

120x
5
)
c2 +O

(
x6)

Verified OK.
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2.10.1 Maple step by step solution

Let’s solve
y′′ = −y′ − y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′ + y = 0

• Characteristic polynomial of ODE
r2 + r + 1 = 0

• Use quadratic formula to solve for r

r = (−1)±
(√

−3
)

2

• Roots of the characteristic polynomial

r =
(
−1

2 −
I
√
3

2 ,−1
2 +

I
√
3

2

)
• 1st solution of the ODE

y1(x) = e−x
2 cos

(√
3x
2

)
• 2nd solution of the ODE

y2(x) = e−x
2 sin

(√
3x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x)
• Substitute in solutions

y = e−x
2 cos

(√
3x
2

)
c1 + e−x

2 sin
(√

3x
2

)
c2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 44� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);� �
y(x) =

(
1− 1

2x
2 + 1

6x
3 − 1

120x
5
)
y(0) +

(
x− 1

2x
2 + 1

24x
4 − 1

120x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56� �
AsymptoticDSolveValue[x^2*y''[x]+x^2*y'[x]+x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
− x5

120 + x4

24 − x2

2 + x

)
+ c1

(
− x5

120 + x3

6 − x2

2 + 1
)

235



2.11 problem 7.3.101 (a)
2.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 243

Internal problem ID [5525]
Internal file name [OUTPUT/4773_Sunday_June_05_2022_03_05_30_PM_90207999/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.101 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_linear_constant_co-
eff", "second_order_ode_can_be_made_integrable", "second order series
method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (44)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (45)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = −y(0)
F1 = −y′(0)
F2 = y(0)
F3 = y′(0)
F4 = −y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 = −

(
∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=0

anx
n

)
= 0

For 0 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1) + an = 0
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Solving for an+2, gives

(5)an+2 = − an
(n+ 2) (n+ 1)

For n = 0 the recurrence equation gives

2a2 + a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0
2

For n = 1 the recurrence equation gives

6a3 + a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
6

For n = 2 the recurrence equation gives

12a4 + a2 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

20a5 + a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
120

For n = 4 the recurrence equation gives

30a6 + a4 = 0
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Which after substituting the earlier terms found becomes

a6 = − a0
720

For n = 5 the recurrence equation gives

42a7 + a5 = 0

Which after substituting the earlier terms found becomes

a7 = − a1
5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 1
2a0x

2 − 1
6a1x

3 + 1
24a0x

4 + 1
120a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

24x
4
)
a0 +

(
x− 1

6x
3 + 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)
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Figure 4: Slope field plot

Verification of solutions

y =
(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

24x
4
)
c1 +

(
x− 1

6x
3 + 1

120x
5
)
c2 +O

(
x6)

Verified OK.

2.11.1 Maple step by step solution

Let’s solve
y′′ = −y

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y = 0
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• Characteristic polynomial of ODE
r2 + 1 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−I, I)

• 1st solution of the ODE
y1(x) = cos (x)

• 2nd solution of the ODE
y2(x) = sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x)

• Substitute in solutions
y = cos (x) c1 + c2 sin (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve(diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 + 1

24x
4
)
y(0) +

(
x− 1

6x
3 + 1

120x
5
)
D(y) (0) +O

(
x6)
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3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42� �
AsymptoticDSolveValue[y''[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

120 − x3

6 + x

)
+ c1

(
x4

24 − x2

2 + 1
)
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2.12 problem 7.3.101 (b)
2.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 247

Internal problem ID [5526]
Internal file name [OUTPUT/4774_Sunday_June_05_2022_03_05_31_PM_62980122/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.101 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

Unable to solve or complete the solution.

x3y′′ + (1 + x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + (1 + x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1 + x

x3

246



Table 28: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1+x
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

2.12.1 Maple step by step solution

Let’s solve
y′′x3 + (1 + x) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (1+x)y

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (1+x)y

x3 = 0

• Multiply by denominators of the ODE
y′′x3 + (1 + x) y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)
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◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE(
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
x3 + (1 + x) y(t) = 0

• Simplify

x
(

d2

dt2
y(t)− d

dt
y(t)

)
+ (1 + x) y(t) = 0

• Isolate 2nd derivative
d2

dt2
y(t) = − (1+x)y(t)

x
+ d

dt
y(t)

• Group terms with y(t) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
d2

dt2
y(t) + (1+x)y(t)

x
− d

dt
y(t) = 0

• Characteristic polynomial of ODE
r2 + 1+x

x
− r = 0

• Factor the characteristic polynomial
r2x−rx+x+1

x
= 0

• Roots of the characteristic polynomial

r =
(

x+
√
−3x2−4x
2x ,−−x+

√
−3x2−4x
2x

)
• 1st solution of the ODE

y1(t) = e
(
x+

√
−3x2−4x

)
t

2x

• 2nd solution of the ODE

y2(t) = e−
(
−x+

√
−3x2−4x

)
t

2x

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
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y(t) = c1e
(
x+

√
−3x2−4x

)
t

2x + c2e−
(
−x+

√
−3x2−4x

)
t

2x

• Change variables back using t = ln (x)

y = c1e
(
x+

√
−3x2−4x

)
ln(x)

2x + c2e−
(
−x+

√
−3x2−4x

)
ln(x)

2x

• Simplify

y = c1x
x+

√
−3x2−4x
2x + c2x

−−x+
√

−3x2−4x
2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)+(1+x)*y(x)=0,y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 222� �
AsymptoticDSolveValue[x^3*y''[x]+(1+x)*y[x]==0,y[x],{x,0,5}]� �
y(x) → c1e

− 2i√
xx3/4

(
520667425699057ix9/2

131941395333120 − 21896102683ix7/2

21474836480 + 19100991ix5/2

41943040

− 3367ix3/2

8192 − 194208949785748261x5

21110623253299200 + 5189376335871x4

2748779069440 − 846810601x3

1342177280
+ 205387x2

524288 − 273x
512 + 13i

√
x

16

+1
)
+c2e

2i√
xx3/4

(
−520667425699057ix9/2

131941395333120 +21896102683ix7/2

21474836480 − 19100991ix5/2

41943040 +3367ix3/2

8192 − 194208949785748261x5

21110623253299200 +5189376335871x4

2748779069440 − 846810601x3

1342177280 +205387x2

524288 − 273x
512 − 13i

√
x

16 +1
)
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2.13 problem 7.3.101 (c)
Internal problem ID [5527]
Internal file name [OUTPUT/4775_Sunday_June_05_2022_03_05_32_PM_51279556/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.101 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′x+ y′x5 + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y′′x+ y′x5 + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = x4

q(x) = 1
x
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Table 30: Table p(x), q(x) singularites.

p(x) = x4

singularity type
x = ∞ “regular”
x = −∞ “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞,−∞, 0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

y′′x+ y′x5 + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
x+

(
∞∑
n=0

(n+ r) anxn+r−1

)
x5 +

(
∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=0

x4+n+ran(n+r)
)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x4+n+ran(n+ r) =
∞∑
n=5

an−5(n+ r − 5)xn+r−1

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=5

an−5(n+ r − 5)xn+r−1

)
+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0
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Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = − 1
r (1 + r)

Substituting n = 2 in Eq. (2B) gives

a2 =
1

r (1 + r)2 (2 + r)

Substituting n = 3 in Eq. (2B) gives

a3 = − 1
r (1 + r)2 (2 + r)2 (3 + r)
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Substituting n = 4 in Eq. (2B) gives

a4 =
1

r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)

For 5 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an−5(n+ r − 5) + an−1 = 0

Solving for an from recursive equation (4) gives

an = −nan−5 + ran−5 − 5an−5 + an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = −nan−5 + 4an−5 − an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
1

r(1+r)2(2+r)
1
12

a3 − 1
r(1+r)2(2+r)2(3+r) − 1

144

a4
1

r(1+r)2(2+r)2(3+r)2(4+r)
1

2880

For n = 5, using the above recursive equation gives

a5 =
−r9 − 16r8 − 106r7 − 376r6 − 769r5 − 904r4 − 564r3 − 144r2 − 1

r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 2881
86400

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

r(1+r) −1
2

a2
1

r(1+r)2(2+r)
1
12

a3 − 1
r(1+r)2(2+r)2(3+r) − 1

144

a4
1

r(1+r)2(2+r)2(3+r)2(4+r)
1

2880

a5
−r9−16r8−106r7−376r6−769r5−904r4−564r3−144r2−1

r(1+r)2(2+r)2(3+r)2(4+r)2(5+r) − 2881
86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
r (1 + r)

Therefore

lim
r→r2

− 1
r (1 + r) = lim

r→0
− 1
r (1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode y′′x+ y′x5 + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))
x5

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

((
y′1(x)x5 + y′′1(x)x+ y1(x)

)
ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x+ y1(x)x4

)
C

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x5

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

y′1(x)x5 + y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x+ y1(x)x4

)
C +

(
∞∑
n=0

bnx
n+r2(n+ r2)

x

)
x5

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x+ (x5 − 1)

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x6 +

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x+ (x5 − 1)

(
∞∑
n=0

anx
n+1
))

C

x

+

(
∞∑
n=0

xn−1bnn

)
x6 +

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C xnan(n+ 1)
)

+
(

∞∑
n=0

C xn+5an

)
+

∞∑
n =0

(−Canx
n)

+
(

∞∑
n=0

nx4+nbn

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0
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The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

C xn+5an =
∞∑
n=6

Can−6x
n−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

nx4+nbn =
∞∑
n=5

(n− 5) bn−5x
n−1

∞∑
n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+
(

∞∑
n=6

Can−6x
n−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=5

(n−5) bn−5x
n−1

)
+
(

∞∑
n=0

nxn−1bn(n−1)
)
+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

5Ca2 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
7
6 = 0

Solving the above for b3 gives
b3 =

7
36

For n = 4, Eq (2B) gives
7Ca3 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 +
35
144 = 0

Solving the above for b4 gives
b4 = − 35

1728
For n = 5, Eq (2B) gives

9Ca4 + b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 −
101
4320 = 0

Solving the above for b5 gives
b5 =

101
86400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))
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Verification of solutions

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − 2881x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

Verified OK.

262



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati

trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 3`[0, y]� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+x^5*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 2881
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 + 1

144x
4 − 1

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 7

36x
3 − 35

1728x
4 + 101

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*y''[x]+x^5*y'[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
144x

(
x3 − 12x2 + 72x− 144

)
log(x)

+ −47x4 + 480x3 − 2160x2 + 1728x+ 1728
1728

)
+ c2

(
x5

2880 −
x4

144 +
x3

12 −
x2

2 +x

)
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2.14 problem 7.3.101 (d)
Internal problem ID [5528]
Internal file name [OUTPUT/4776_Sunday_June_05_2022_03_05_34_PM_16023406/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.101 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

sin (x) y′′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

sin (x) y′′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = − 1
sin (x)
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Table 31: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = − 1
sin(x)

singularity type
x = πZ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [πZ]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. Let the
solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)sin (x)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
−

(
∞∑
n=0

anx
n+r

)
= 0

Expanding sin (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

sin (x) = x− 1
6x

3 + 1
120x

5 − 1
5040x

7 + . . .

= x− 1
6x

3 + 1
120x

5 − 1
5040x

7
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+r+5an(n+ r) (n+ r − 1)

5040

)
+
(

∞∑
n=0

xn+r+3an(n+ r) (n+ r − 1)
120

)

+
∞∑

n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

6

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+r+5an(n+ r) (n+ r − 1)

5040

)
=

∞∑
n=6

(
−an−6(n+ r − 6) (n− 7 + r)xn+r−1

5040

)
∞∑

n =0

xn+r+3an(n+ r) (n+ r − 1)
120 =

∞∑
n=4

an−4(−4 + n+ r) (n− 5 + r)xn+r−1

120

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

6

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1

6

)
∞∑

n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =6

(
−an−6(n+ r − 6) (n− 7 + r)xn+r−1

5040

)
+
(

∞∑
n=4

an−4(−4 + n+ r) (n− 5 + r)xn+r−1

120

)

+
∞∑

n =2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1

6

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
1+n

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 =
1

r (1 + r)
Substituting n = 2 in Eq. (2B) gives

a2 =
r4 − r2 + 6

6r (1 + r)2 (2 + r)

Substituting n = 3 in Eq. (2B) gives

a3 =
r4 + 2r3 + 2r2 + r + 3

3r (1 + r)2 (2 + r)2 (3 + r)

Substituting n = 4 in Eq. (2B) gives

a4 =
7r8 + 56r7 + 154r6 + 140r5 + 103r4 + 524r3 + 1536r2 + 1800r + 1080

360r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)
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Substituting n = 5 in Eq. (2B) gives

a5 =
r8 + 12r7 + 59r6 + 153r5 + 239r4 + 273r3 + 331r2 + 372r + 225

15r (1 + r)2 (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

For 6 ≤ n the recursive equation is

(3)−an−6(n+ r − 6) (n− 7 + r)
5040 + an−4(−4 + n+ r) (n− 5 + r)

120
− an−2(n+ r − 2) (n− 3 + r)

6 + an(n+ r) (n+ r − 1)− an−1 = 0

Solving for an from recursive equation (4) gives

an = n2an−6 − 42n2an−4 + 840n2an−2 + 2nran−6 − 84nran−4 + 1680nran−2 + r2an−6 − 42r2an−4 + 840r2an−2 − 13nan−6 + 378nan−4 − 4200nan−2 − 13ran−6 + 378ran−4 − 4200ran−2 + 42an−6 − 840an−4 + 5040an−2 + 5040an−1

5040 (n+ r) (n+ r − 1)
(4)

Which for the root r = 1 becomes

an = (an−6 − 42an−4 + 840an−2)n2 + (−11an−6 + 294an−4 − 2520an−2)n+ 30an−6 − 504an−4 + 1680an−2 + 5040an−1

5040n (1 + n)
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1

1
r(1+r)

1
2

a2
r4−r2+6

6r(1+r)2(2+r)
1
12

a3
r4+2r3+2r2+r+3

3r(1+r)2(2+r)2(3+r)
1
48

a4
7r8+56r7+154r6+140r5+103r4+524r3+1536r2+1800r+1080

360r(1+r)2(2+r)2(3+r)2(4+r)
1

192

a5
r8+12r7+59r6+153r5+239r4+273r3+331r2+372r+225

15r(1+r)2(2+r)2(3+r)2(4+r)2(5+r)
37

28800

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))
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Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 1
r (1 + r)

Therefore

lim
r→r2

1
r (1 + r) = lim

r→0

1
r (1 + r)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)
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Substituting these back into the given ode sin (x) y′′ − y = 0 gives

sin (x)
(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
−Cy1(x) ln (x)−

(
∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(sin (x) y′′1(x)− y1(x)) ln (x) + sin (x)

(
2y′1(x)

x
− y1(x)

x2

))
C

+ sin (x)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
−

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

sin (x) y′′1(x)− y1(x) = 0

Eq (7) simplifes to

(8)
sin (x)

(
2y′1(x)

x
− y1(x)

x2

)
C

+ sin (x)
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
−

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)
sin (x)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

(
∞∑
n=0

anx
n+r1

))
C

x2

+ sin (x)
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)

−

(
∞∑
n=0

bnx
n+r2

)
= 0
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Since r1 = 1 and r2 = 0 then the above becomes

(10)
sin (x)

(
2
(

∞∑
n=0

xnan(1 + n)
)
x−

(
∞∑
n=0

anx
1+n

))
C

x2

+ sin (x)
(

∞∑
n=0

xn−2bnn(n− 1)
)

−

(
∞∑
n=0

bnx
n

)
= 0

Expanding 2 sin(x)C
x

as Taylor series around x = 0 and keeping only the first 6 terms
gives

2 sin (x)C
x

= 2C − 1
3C x2 + 1

60C x4 − 1
2520C x6 + . . .

= 2C − 1
3C x2 + 1

60C x4 − 1
2520C x6

Expanding − sin(x)C
x

as Taylor series around x = 0 and keeping only the first 6 terms
gives

−sin (x)C
x

= −C + 1
6C x2 − 1

120C x4 + 1
5040C x6 + . . .

= −C + 1
6C x2 − 1

120C x4 + 1
5040C x6

Expanding sin (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

sin (x) = x− 1
6x

3 + 1
120x

5 − 1
5040x

7 + . . .

= x− 1
6x

3 + 1
120x

5 − 1
5040x

7
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Which simplifies to

(2A)

∞∑
n =0

(
−C xn+6an(1 + n)

2520

)
+
(

∞∑
n=0

C xn+4an(1 + n)
60

)

+
∞∑

n =0

(
−C xn+2an(1 + n)

3

)
+
(

∞∑
n=0

2anxnC(1 + n)
)

+
∞∑

n =0

(−anx
nC) +

(
∞∑
n=0

C xn+2an
6

)
+

∞∑
n =0

(
−C xn+4an

120

)
+
(

∞∑
n=0

C xn+6an
5040

)
+

∞∑
n =0

(
−nxn+5bn(n− 1)

5040

)
+
(

∞∑
n=0

nxn+3bn(n− 1)
120

)
+

∞∑
n =0

(
−nx1+nbn(n− 1)

6

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =0

(−bnx
n) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−C xn+6an(1 + n)

2520

)
=

∞∑
n=7

(
−Can−7(n− 6)xn−1

2520

)
∞∑

n =0

C xn+4an(1 + n)
60 =

∞∑
n=5

Ca−5+n(n− 4)xn−1

60

∞∑
n =0

(
−C xn+2an(1 + n)

3

)
=

∞∑
n=3

(
−Can−3(n− 2)xn−1

3

)
∞∑

n =0

2anxnC(1 + n) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−anx
nC) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

C xn+2an
6 =

∞∑
n=3

Can−3x
n−1

6

274



∞∑
n =0

(
−C xn+4an

120

)
=

∞∑
n=5

(
−Ca−5+nx

n−1

120

)
∞∑

n =0

C xn+6an
5040 =

∞∑
n=7

Can−7x
n−1

5040

∞∑
n =0

(
−nxn+5bn(n− 1)

5040

)
=

∞∑
n=6

(
−(n− 6) bn−6(n− 7)xn−1

5040

)
∞∑

n =0

nxn+3bn(n− 1)
120 =

∞∑
n=4

(n− 4) bn−4(−5 + n)xn−1

120

∞∑
n =0

(
−nx1+nbn(n− 1)

6

)
=

∞∑
n=2

(
−(n− 2) bn−2(n− 3)xn−1

6

)
∞∑

n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

∞∑
n =7

(
−Can−7(n− 6)xn−1

2520

)
+
(

∞∑
n=5

Ca−5+n(n− 4)xn−1

60

)

+
∞∑

n =3

(
−Can−3(n− 2)xn−1

3

)
+
(

∞∑
n=1

2Can−1nxn−1

)

+
∞∑

n =1

(
−Can−1x

n−1)+( ∞∑
n=3

Can−3x
n−1

6

)
+

∞∑
n =5

(
−Ca−5+nx

n−1

120

)
+
(

∞∑
n=7

Can−7x
n−1

5040

)
+

∞∑
n =6

(
−(n− 6) bn−6(n− 7)xn−1

5040

)
+
(

∞∑
n=4

(n− 4) bn−4(−5 + n)xn−1

120

)

+
∞∑

n =2

(
−(n− 2) bn−2(n− 3)xn−1

6

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =1

(
−bn−1x

n−1) = 0
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For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 1 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 2, Eq (2B) gives
3Ca1 − b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

(−a0 + 30a2)C
6 − b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

1 + 6b3 = 0

Solving the above for b3 gives
b3 = −1

6
For n = 4, Eq (2B) gives

(−3a1 + 42a3)C
6 − b2

3 − b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

5
16 + 12b4 = 0

Solving the above for b4 gives
b4 = − 5

192
For n = 5, Eq (2B) gives

(a0 − 100a2 + 1080a4)C
120 − b3 − b4 + 20b5 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

257
1440 + 20b5 = 0

Solving the above for b5 gives
b5 = − 257

28800
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))) ln (x)

+ 1− 3x2

4 − x3

6 − 5x4

192 − 257x5

28800 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))

+ c2

(
1
(
x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))) ln (x) + 1− 3x2

4 − x3

6

− 5x4

192 − 257x5

28800 +O
(
x6))

Hence the final solution is

y = yh

= c1x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))

+ c2

(
x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6)) ln (x) + 1− 3x2

4 − x3

6 − 5x4

192

− 257x5

28800 +O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))

+ c2

(
x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6)) ln (x) + 1− 3x2

4 − x3

6

− 5x4

192 − 257x5

28800 +O
(
x6))

Verification of solutions

y = c1x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6))

+ c2

(
x

(
1 + x

2 + x2

12 + x3

48 + x4

192 + 37x5

28800 +O
(
x6)) ln (x) + 1− 3x2

4 − x3

6 − 5x4

192

− 257x5

28800 +O
(
x6))

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,

to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists

-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g <> 0, c = 0
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

-(-t^2+1)^(1/2)*u(t)+(t^3-t)*diff(u(t),t)+(t^4-2*t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 0.234 (sec). Leaf size: 58� �
Order:=6;
dsolve(sin(x)*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1 + 1

2x+ 1
12x

2 + 1
48x

3 + 1
192x

4 + 37
28800x

5 +O
(
x6))

+ c2

(
ln (x)

(
x+ 1

2x
2 + 1

12x
3 + 1

48x
4 + 1

192x
5 +O

(
x6))

+
(
1− 3

4x
2 − 1

6x
3 − 5

192x
4 − 257

28800x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 85� �
AsymptoticDSolveValue[Sin[x]*y''[x]-y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
48x

(
x3 + 4x2 + 24x+ 48

)
log(x) + 1

64
(
−3x4 − 16x3 − 80x2 − 64x+ 64

))
+ c2

(
x5

192 + x4

48 + x3

12 + x2

2 + x

)
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2.15 problem 7.3.101 (e)
Internal problem ID [5529]
Internal file name [OUTPUT/4777_Sunday_June_05_2022_03_05_37_PM_75403330/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.101 (e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

cos (x) y′′ − sin (x) y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (49)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (50)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

282



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
sin (x) y
cos (x)

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= tan (x) y′ + sec (x)2 y

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= y tan (x)2 + 2 sec (x)2 (y tan (x) + y′)

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
tan (x)2 + 6 sec (x)2 tan (x)

)
y′ + 6 sec (x)2

(
sec (x)2 + 2 tan (x)

3 − 2
3

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
(
24 sec (x)4 + (6 tan (x)− 16) sec (x)2

)
y′ + 24y

((
tan (x) + 3

4

)
sec (x)4 +

(
−7 tan (x)

24 − 7
12

)
sec (x)2 − tan (x)

24

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = y(0)
F2 = 2y′(0)
F3 = 2y(0)
F4 = 4y(0) + 8y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

6x
3 + 1

60x
5 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4 + 1

90x
6
)
y′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

∞∑
n=2

n(n− 1) anxn−2 =
sin (x)

(
∞∑
n=0

anx
n

)
cos (x) (1)

Expanding cos (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

cos (x) = 1− 1
2x

2 + 1
24x

4 − 1
720x

6 + . . .

= 1− 1
2x

2 + 1
24x

4 − 1
720x

6

Expanding − sin (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

− sin (x) = −x+ 1
6x

3 − 1
120x

5 + 1
5040x

7 + . . .

= −x+ 1
6x

3 − 1
120x

5 + 1
5040x

7

Hence the ODE in Eq (1) becomes

(
1− 1

2x
2 + 1

24x
4 − 1

720x
6
)( ∞∑

n=2

n(n− 1) anxn−2

)

+
(
−x+ 1

6x
3 − 1

120x
5 + 1

5040x
7
)( ∞∑

n=0

anx
n

)
= 0
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Expanding the first term in (1) gives

1 ·
(

∞∑
n=2

n(n− 1) anxn−2

)
− x2

2 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ x4

24 ·

(
∞∑
n=2

n(n− 1) anxn−2

)

− x6

720 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+
(
−x+ 1

6x
3 − 1

120x
5 + 1

5040x
7
)( ∞∑

n=0

anx
n

)
= 0

Expanding the second term in (1) gives

1 ·
(

∞∑
n=2

n(n− 1) anxn−2

)
− x2

2 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+ x4

24

·

(
∞∑
n=2

n(n− 1) anxn−2

)
− x6

720 ·

(
∞∑
n=2

n(n− 1) anxn−2

)
+−x ·

(
∞∑
n=0

anx
n

)

+ x3

6 ·

(
∞∑
n=0

anx
n

)
− x5

120 ·

(
∞∑
n=0

anx
n

)
+ x7

5040 ·

(
∞∑
n=0

anx
n

)
= 0

Which simplifies to

(2)

∞∑
n =2

(
−nxn+4an(n− 1)

720

)
+
(

∞∑
n=2

nxn+2an(n− 1)
24

)

+
∞∑

n =2

(
−nanx

n(n− 1)
2

)
+
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(
−x1+nan

)
+
(

∞∑
n=0

xn+3an
6

)
+

∞∑
n =0

(
−xn+5an

120

)
+
(

∞∑
n=0

xn+7an
5040

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−nxn+4an(n− 1)

720

)
=

∞∑
n=6

(
−(n− 4) an−4(n− 5)xn

720

)
∞∑

n =2

nxn+2an(n− 1)
24 =

∞∑
n=4

(n− 2) an−2(n− 3)xn

24
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∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

∞∑
n =0

xn+3an
6 =

∞∑
n=3

an−3x
n

6

∞∑
n =0

(
−xn+5an

120

)
=

∞∑
n=5

(
−an−5x

n

120

)
∞∑

n =0

xn+7an
5040 =

∞∑
n=7

an−7x
n

5040

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =6

(
−(n− 4) an−4(n− 5)xn

720

)
+
(

∞∑
n=4

(n− 2) an−2(n− 3)xn

24

)

+
∞∑

n =2

(
−nanx

n(n− 1)
2

)
+
(

∞∑
n=0

(n+2) an+2(1+n)xn

)
+

∞∑
n =1

(−an−1x
n)

+
(

∞∑
n=3

an−3x
n

6

)
+

∞∑
n =5

(
−an−5x

n

120

)
+
(

∞∑
n=7

an−7x
n

5040

)
= 0

n = 1 gives
6a3 − a0 = 0

Which after substituting earlier equations, simplifies to

a3 =
a0
6

n = 2 gives
−a2 + 12a4 − a1 = 0

Which after substituting earlier equations, simplifies to

a4 =
a1
12

287



n = 3 gives

−3a3 + 20a5 − a2 +
a0
6 = 0

Which after substituting earlier equations, simplifies to

a5 =
a0
60

n = 4 gives
a2
12 − 6a4 + 30a6 − a3 +

a1
6 = 0

Which after substituting earlier equations, simplifies to

a6 =
a0
180 + a1

90

n = 5 gives
a3
4 − 10a5 + 42a7 − a4 +

a2
6 − a0

120 = 0

Which after substituting earlier equations, simplifies to

a7 =
a0
315 + a1

504

For 7 ≤ n, the recurrence equation is

(4)−(n− 4) an−4(n− 5)
720 + (n− 2) an−2(n− 3)

24 − nan(n− 1)
2

+ (n+ 2) an+2(1 + n)− an−1 +
an−3

6 − an−5

120 + an−7

5040 = 0

Solving for an+2, gives

(5)

an+2

= 2520n2an + 7n2an−4 − 210n2an−2 − 2520nan − 63nan−4 + 1050nan−2 − an−7 + 42an−5 + 140an−4 − 840an−3 − 1260an−2 + 5040an−1

5040 (n+ 2) (1 + n)

= (2520n2 − 2520n) an
5040 (n+ 2) (1 + n) − an−7

5040 (n+ 2) (1 + n) +
an−5

120 (n+ 2) (1 + n)

+ (7n2 − 63n+ 140) an−4

5040 (n+ 2) (1 + n) − an−3

6 (n+ 2) (1 + n)

+ (−210n2 + 1050n− 1260) an−2

5040 (n+ 2) (1 + n) + an−1

(n+ 2) (1 + n)
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And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
6a0x

3 + 1
12a1x

4 + 1
60a0x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + 1

6x
3 + 1

60x
5
)
a0 +

(
x+ 1

12x
4
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

6x
3 + 1

60x
5
)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

6x
3 + 1

60x
5 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4 + 1

90x
6
)
y′(0) +O

(
x6)

(2)y =
(
1 + 1

6x
3 + 1

60x
5
)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + 1

6x
3 + 1

60x
5 + 1

180x
6
)
y(0) +

(
x+ 1

12x
4 + 1

90x
6
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

6x
3 + 1

60x
5
)
c1 +

(
x+ 1

12x
4
)
c2 +O

(
x6)

Verified OK.
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric

-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius

-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)

trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients

--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 5`[0, u]� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
Order:=6;
dsolve(cos(x)*diff(y(x),x$2)-sin(x)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

6x
3 + 1

60x
5
)
y(0) +

(
x+ 1

12x
4
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35� �
AsymptoticDSolveValue[Cos[x]*y''[x]-Sin[x]*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x4

12 + x

)
+ c1

(
x5

60 + x3

6 + 1
)
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2.16 problem 7.3.102
2.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 300

Internal problem ID [5530]
Internal file name [OUTPUT/4778_Sunday_June_05_2022_03_05_40_PM_71362295/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.102.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = − 1
x2
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Table 32: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = − 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
−

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−anx

n+r
)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− a0x
r = 0

Or
(xrr(−1 + r)− xr) a0 = 0

Since a0 6= 0 then the above simplifies to(
r2 − r − 1

)
xr = 0

Since the above is true for all x then the indicial equation becomes

r2 − r − 1 = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2 +

√
5
2

r2 =
1
2 −

√
5
2

Since a0 6= 0 then the indicial equation becomes(
r2 − r − 1

)
xr = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 =
√
5 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
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Or

y1(x) =
∞∑
n=0

anx
n+ 1

2+
√
5
2

y2(x) =
∞∑
n=0

bnx
n+ 1

2−
√
5

2

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 0 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an = 0

Solving for an from recursive equation (4) gives

an = 0 (4)

Which for the root r = 1
2 +

√
5
2 becomes

an = 0 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 +
√
5
2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
1
2+

√
5

2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
1
2+

√
5

2
(
1 +O

(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 0 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− bn = 0

Solving for bn from recursive equation (4) gives

bn = 0 (4)

Which for the root r = 1
2 −

√
5
2 becomes

bn = 0 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 1

2 −
√
5
2 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1 0 0

For n = 2, using the above recursive equation gives

b2 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
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For n = 5, using the above recursive equation gives

b5 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 0 0
b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = x
1
2+

√
5

2
(
b0 + b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6. . .
)

= x
1
2−

√
5

2
(
1 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
1
2+

√
5

2
(
1 +O

(
x6))+ c2x

1
2−

√
5

2
(
1 +O

(
x6))

Hence the final solution is

y = yh

= c1x
1
2+

√
5

2
(
1 +O

(
x6))+ c2x

1
2−

√
5

2
(
1 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
1
2+

√
5
2
(
1 +O

(
x6))+ c2x

1
2−

√
5
2
(
1 +O

(
x6))

Verification of solutions

y = c1x
1
2+

√
5
2
(
1 +O

(
x6))+ c2x

1
2−

√
5
2
(
1 +O

(
x6))

Verified OK.
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2.16.1 Maple step by step solution

Let’s solve
x2y′′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− y(t) = 0

• Simplify
d2

dt2
y(t)− d

dt
y(t)− y(t) = 0

• Characteristic polynomial of ODE
r2 − r − 1 = 0
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• Use quadratic formula to solve for r

r =
1±

(√
5
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

√
5
2 , 12 +

√
5
2

)
• 1st solution of the ODE

y1(t) = e
(

1
2−

√
5
2

)
t

• 2nd solution of the ODE

y2(t) = e
(

1
2+

√
5
2

)
t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions

y(t) = c1e
(

1
2−

√
5
2

)
t + c2e

(
1
2+

√
5
2

)
t

• Change variables back using t = ln (x)

y = c1e
(

1
2−

√
5

2

)
ln(x) + c2eln(x)

(
1
2+

√
5

2

)
• Simplify

y =
√
x
(
x−

√
5

2 c1 + x
√
5

2 c2
)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);� �

y(x) =
√
x
(
x−

√
5

2 c1 + x
√
5

2 c2
)
+O

(
x6)

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 38� �
AsymptoticDSolveValue[x^2*y''[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x
1
2

(
1+

√
5
)
+ c2x

1
2

(
1−

√
5
)
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2.17 problem 7.3.103
2.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 315

Internal problem ID [5531]
Internal file name [OUTPUT/4779_Sunday_June_05_2022_03_05_41_PM_82105689/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.103.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ +
(
x− 3

4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ +
(
x− 3

4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = −3 + 4x
4x2
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Table 34: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = −3+4x
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ +
(
x− 3

4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
+
(
x− 3

4

)( ∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

x1+n+ran

)
+

∞∑
n =0

(
−3anxn+r

4

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

x1+n+ran =
∞∑
n=1

an−1x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r

)
+

∞∑
n =0

(
−3anxn+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− 3anxn+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r)− 3a0xr

4 = 0

Or (
xrr(−1 + r)− 3xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 − 4r − 3)xr

4 = 0

Since the above is true for all x then the indicial equation becomes

r2 − r − 3
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 = −1
2

Since a0 6= 0 then the indicial equation becomes

(4r2 − 4r − 3)xr

4 = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 2 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x
3
2

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +

∞∑
n=0

bnx
n

√
x

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n− 1

2

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1 −
3an
4 = 0

Solving for an from recursive equation (4) gives

an = − 4an−1

4n2 + 8nr + 4r2 − 4n− 4r − 3 (4)

Which for the root r = 3
2 becomes

an = − an−1

n (n+ 2) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 4
4r2 + 4r − 3

Which for the root r = 3
2 becomes

a1 = −1
3

And the table now becomes

n an,r an

a0 1 1
a1 − 4

4r2+4r−3 −1
3

For n = 2, using the above recursive equation gives

a2 =
16

(4r2 + 4r − 3) (4r2 + 12r + 5)

Which for the root r = 3
2 becomes

a2 =
1
24

And the table now becomes

n an,r an

a0 1 1
a1 − 4

4r2+4r−3 −1
3

a2
16

(4r2+4r−3)(4r2+12r+5)
1
24

For n = 3, using the above recursive equation gives

a3 = − 64
(4r2 + 4r − 3) (4r2 + 12r + 5) (4r2 + 20r + 21)

Which for the root r = 3
2 becomes

a3 = − 1
360
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And the table now becomes

n an,r an

a0 1 1
a1 − 4

4r2+4r−3 −1
3

a2
16

(4r2+4r−3)(4r2+12r+5)
1
24

a3 − 64
(4r2+4r−3)(4r2+12r+5)(4r2+20r+21) − 1

360

For n = 4, using the above recursive equation gives

a4 =
256

(4r2 + 4r − 3) (4r2 + 12r + 5) (4r2 + 20r + 21) (4r2 + 28r + 45)

Which for the root r = 3
2 becomes

a4 =
1

8640

And the table now becomes

n an,r an

a0 1 1
a1 − 4

4r2+4r−3 −1
3

a2
16

(4r2+4r−3)(4r2+12r+5)
1
24

a3 − 64
(4r2+4r−3)(4r2+12r+5)(4r2+20r+21) − 1

360

a4
256

(4r2+4r−3)(4r2+12r+5)(4r2+20r+21)(4r2+28r+45)
1

8640

For n = 5, using the above recursive equation gives

a5 = − 1024
(2r + 11) (2r + 5)2 (2r + 3)2 (2r − 1) (2r + 9) (2r + 7)2 (2r + 1)

Which for the root r = 3
2 becomes

a5 = − 1
302400

And the table now becomes
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n an,r an

a0 1 1
a1 − 4

4r2+4r−3 −1
3

a2
16

(4r2+4r−3)(4r2+12r+5)
1
24

a3 − 64
(4r2+4r−3)(4r2+12r+5)(4r2+20r+21) − 1

360

a4
256

(4r2+4r−3)(4r2+12r+5)(4r2+20r+21)(4r2+28r+45)
1

8640

a5 − 1024
(2r+11)(2r+5)2(2r+3)2(2r−1)(2r+9)(2r+7)2(2r+1) − 1

302400

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a2(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a2

= 16
(4r2 + 4r − 3) (4r2 + 12r + 5)

Therefore

lim
r→r2

16
(4r2 + 4r − 3) (4r2 + 12r + 5) = lim

r→− 1
2

16
(4r2 + 4r − 3) (4r2 + 12r + 5)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode x2y′′ +
(
x− 3

4

)
y = 0 gives

x2

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x− 3

4

)(
Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

))
= 0

Which can be written as

(7)

((
x2y′′1(x) +

(
x− 3

4

)
y1(x)

)
ln (x) + x2

(
2y′1(x)

x
− y1(x)

x2

))
C

+ x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x− 3

4

)( ∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

x2y′′1(x) +
(
x− 3

4

)
y1(x) = 0
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Eq (7) simplifes to

(8)
x2
(
2y′1(x)

x
− y1(x)

x2

)
C + x2

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))

+
(
x− 3

4

)( ∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

(
∞∑
n=0

anx
n+r1

))
C

+
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2

+
(

∞∑
n=0

bnx
n+r2

)
x−

3
(

∞∑
n=0

bnx
n+r2

)
4 = 0

Since r1 = 3
2 and r2 = −1

2 then the above becomes

(10)

(
2
(

∞∑
n=0

x
1
2+nan

(
n+ 3

2

))
x−

(
∞∑
n=0

anx
n+ 3

2

))
C

+
(

∞∑
n=0

x− 5
2+nbn

(
n− 1

2

)(
−3
2 + n

))
x2

+
(

∞∑
n=0

bnx
n− 1

2

)
x−

3
(

∞∑
n=0

bnx
n− 1

2

)
4 = 0

Which simplifies to

(2A)

(
∞∑
n=0

C xn+ 3
2an(2n+ 3)

)
+

∞∑
n =0

(
−Canx

n+ 3
2

)
+
(

∞∑
n=0

xn− 1
2 bn(4n2 − 8n+ 3)

4

)
+
(

∞∑
n=0

x
1
2+nbn

)
+

∞∑
n =0

(
−3bnxn− 1

2

4

)
= 0
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The next step is to make all powers of x be n − 1
2 in each summation term. Going

over each summation term above with power of x in it which is not already xn− 1
2 and

adjusting the power and the corresponding index gives

∞∑
n =0

C xn+ 3
2an(2n+ 3) =

∞∑
n=2

Can−2(2n− 1)xn− 1
2

∞∑
n =0

(
−Canx

n+ 3
2

)
=

∞∑
n=2

(
−Can−2x

n− 1
2

)
∞∑

n =0

x
1
2+nbn =

∞∑
n=1

bn−1x
n− 1

2

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1

2 .

(2B)

(
∞∑
n=2

Can−2(2n− 1)xn− 1
2

)
+

∞∑
n =2

(
−Can−2x

n− 1
2

)
+
(

∞∑
n=0

xn− 1
2 bn(4n2 − 8n+ 3)

4

)

+
(

∞∑
n=1

bn−1x
n− 1

2

)
+

∞∑
n =0

(
−3bnxn− 1

2

4

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−b1 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−b1 + 1 = 0

Solving the above for b1 gives
b1 = 1

For n = N , where N = 2 which is the difference between the two roots, we are free to
choose b2 = 0. Hence for n = 2, Eq (2B) gives

2C + 1 = 0
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Which is solved for C. Solving for C gives

C = −1
2

For n = 3, Eq (2B) gives
4Ca1 + b2 + 3b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

3b3 +
2
3 = 0

Solving the above for b3 gives
b3 = −2

9
For n = 4, Eq (2B) gives

6Ca2 + b3 + 8b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

8b4 −
25
72 = 0

Solving the above for b4 gives
b4 =

25
576

For n = 5, Eq (2B) gives
8Ca3 + b4 + 15b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

15b5 +
157
2880 = 0

Solving the above for b5 gives
b5 = − 157

43200
Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1

2 and all bn, then the second solution becomes

y2(x) = −1
2

(
x

3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))) ln (x)

+
1 + x− 2x3

9 + 25x4

576 − 157x5

43200 +O(x6)
√
x
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))

+ c2

(
−1
2

(
x

3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))) ln (x)

+
1 + x− 2x3

9 + 25x4

576 − 157x5

43200 +O(x6)
√
x

)

Hence the final solution is

y = yh

= c1x
3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))

+ c2

−
x

3
2

(
1− x

3 +
x2

24 −
x3

360 +
x4

8640 −
x5

302400 +O(x6)
)
ln (x)

2

+
1 + x− 2x3

9 + 25x4

576 − 157x5

43200 +O(x6)
√
x


Summary
The solution(s) found are the following

(1)

y = c1x
3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))

+ c2

−
x

3
2

(
1− x

3 +
x2

24 −
x3

360 +
x4

8640 −
x5

302400 +O(x6)
)
ln (x)

2

+
1 + x− 2x3

9 + 25x4

576 − 157x5

43200 +O(x6)
√
x


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Verification of solutions

y = c1x
3
2

(
1− x

3 + x2

24 − x3

360 + x4

8640 − x5

302400 +O
(
x6))

+ c2

−
x

3
2

(
1− x

3 +
x2

24 −
x3

360 +
x4

8640 −
x5

302400 +O(x6)
)
ln (x)

2

+
1 + x− 2x3

9 + 25x4

576 − 157x5

43200 +O(x6)
√
x


Verified OK.

2.17.1 Maple step by step solution

Let’s solve
x2y′′ +

(
x− 3

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − (−3+4x)y

4x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (−3+4x)y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = −3+4x
4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= −3
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0
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• Multiply by denominators
4x2y′′ + (−3 + 4x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑
k=0

akx
k+r+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(1 + 2r) (−3 + 2r)xr +
(

∞∑
k=1

(ak(2k + 2r + 1) (2k + 2r − 3) + 4ak−1)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
(1 + 2r) (−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
−1

2 ,
3
2

}
• Each term in the series must be 0, giving the recursion relation

4
(
k + r + 1

2

) (
k + r − 3

2

)
ak + 4ak−1 = 0

• Shift index using k− >k + 1
4
(
k + 3

2 + r
) (

k − 1
2 + r

)
ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(2k+3+2r)(2k−1+2r)

• Recursion relation for r = −1
2

ak+1 = − 4ak
(2k+2)(2k−2)

• Series not valid for r = −1
2 , division by 0 in the recursion relation at k = 1
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ak+1 = − 4ak
(2k+2)(2k−2)

• Recursion relation for r = 3
2

ak+1 = − 4ak
(2k+6)(2k+2)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 4ak
(2k+6)(2k+2)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 65� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+(x-3/4)*y(x)=0,y(x),type='series',x=0);� �
y(x)

=
c1x

2(1− 1
3x+ 1

24x
2 − 1

360x
3 + 1

8640x
4 − 1

302400x
5 +O(x6)

)
+ c2

(
ln (x)

(
x2 − 1

3x
3 + 1

24x
4 − 1

360x
5 +O(x6)

)
+
(
−2− 2x+ 4

9x
3 − 25

288x
4 + 157

21600x
5 +O(x6)

))
√
x
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3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 101� �
AsymptoticDSolveValue[x^2*y''[x]+(x-3/4)*y[x]==0,y[x],{x,0,5}]� �
y(x)

→ c2

(
x11/2

8640 − x9/2

360 + x7/2

24 − x5/2

3

+ x3/2
)
+ c1

(
31x4 − 176x3 + 144x2 + 576x+ 576

576
√
x

− 1
48x

3/2(x2 − 8x+24
)
log(x)

)
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2.18 problem 7.3.104 (d)
2.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 326

Internal problem ID [5532]
Internal file name [OUTPUT/4780_Sunday_June_05_2022_03_05_44_PM_5666023/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300
Problem number: 7.3.104 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − xy′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ − xy′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −1
x

q(x) = 1
x2
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Table 36: Table p(x), q(x) singularites.

p(x) = − 1
x

singularity type
x = 0 “regular”

q(x) = 1
x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ − xy′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

x2

(
∞∑
n=0

(n+ r) (n+ r− 1) anxn+r−2

)
− x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(1)

Which simplifies to

(2A)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r.

(2B)
(

∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

anx
n+r

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1)− xn+ran(n+ r) + anx
n+r = 0

When n = 0 the above becomes

xra0r(−1 + r)− xra0r + a0x
r = 0

Or
(xrr(−1 + r)− xrr + xr) a0 = 0

Since a0 6= 0 then the above simplifies to

(−1 + r)2 xr = 0

Since the above is true for all x then the indicial equation becomes

(−1 + r)2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 1

Since a0 6= 0 then the indicial equation becomes

(−1 + r)2 xr = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)
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Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+1

)

We start by finding the first solution y1(x). Eq (2B) derived above is now used to find
all an coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. a0 is arbitrary and taken as a0 = 1. For 0 ≤ n the recursive equation
is

(3)an(n+ r) (n+ r − 1)− an(n+ r) + an = 0

Solving for an from recursive equation (4) gives

an = 0 (4)

Which for the root r = 1 becomes
an = 0 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes
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n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 0 0
a4 0 0
a5 0 0

Using the above table, then the first solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1 +O

(
x6))

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 1. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 1)

b0 1 1 N/A since bn starts from 1 N/A
b1 0 0 0 0
b2 0 0 0 0
b3 0 0 0 0
b4 0 0 0 0
b5 0 0 0 0

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= x
(
1 +O

(
x6)) ln (x) + xO

(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + xO

(
x6))

Hence the final solution is

y = yh

= c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + xO

(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + xO

(
x6))

Verification of solutions

y = c1x
(
1 +O

(
x6))+ c2

(
x
(
1 +O

(
x6)) ln (x) + xO

(
x6))

Verified OK.
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2.18.1 Maple step by step solution

Let’s solve
x2y′′ − xy′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

x
− y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

x
+ y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − xy′ + y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− d

dt
y(t) + y(t) = 0

• Simplify
d2

dt2
y(t)− 2 d

dt
y(t) + y(t) = 0

• Characteristic polynomial of ODE
r2 − 2r + 1 = 0
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• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the ODE
y1(t) = et

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t et

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1et + c2t et

• Change variables back using t = ln (x)
y = c2 ln (x)x+ c1x

• Simplify
y = x(c1 + c2 ln (x))

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) = x(c2 ln (x) + c1) +O
(
x6)
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 14� �
AsymptoticDSolveValue[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1x+ c2x log(x)
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