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1.1 problem 7.2.1
1.1.1 Maple step by step solution . . . ... ... ... ........ 11l

Internal problem ID [5503]
Internal file name [OUTPUT/4751_Sunday_June_05_2022_03_04_57_PM_30656618/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.1.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__linear__constant__co-
eff", "second__order__ode_ can_ be__made__integrable", "second order series
method. Ordinary point",

"

second order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y' +y=0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t=xz—-1
The ode is converted to be in terms of the new independent variable ¢. This results in

d2

@y(t) +y(t)=0

With its expansion point and initial conditions now at ¢ = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.



Let

y' = f(z,v,v)

Assuming expansion is at g = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at zo which must be the
case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using

Taylor series gives

y(z) = y(zo) + (z — 20) y'(w0) +

(x — $0)2

2
2

yll (zo) +

(x — m0)3
3!

B , T z
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
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_dR
C dx
of of /+6f "
oz oy’ T oy
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Therefore (6) can be used from now on along with
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To find y(z) series solution around z = 0. Hence

Fy = —y(t)

dFy
B =2
V7 dt

0F, O0F,d OF,
=T0 Tl 4+ 0 R
at Jy dty( )+ Oy (t) °

d
= (t)

dF,
Fy=—*
27 dt

_OF OF d OF,

= Ty a?®
=y(t)
dF,
Fy=—2
3Tt

o 8F2 8F2 d 8F2

_ 92 0l gy, 972 g
o * oy at¥ )+8%y(t) ?

= %y(t)

dFs
B =23
YTt

0F; O0F3d O0F;
= )+ F
o T oy ai? T gz, T

= —y(t)

9 g
8y (1)

And so on. Evaluating all the above at initial conditions ¢ = 0 and y(0) = y(0) and
y'(0) = ¢/(0) gives

Fy = —y(0)
Fy = —y/(0)
F, = y(0)
F3 =14/(0)
Fy=—y(0)

Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1 1
S T S S T TR I B 6
y(t) < 5t + 51t ~ ot )y(0)+ (t ot +120t>y(0)+0(t)



Since the expansion point ¢ = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) = Z ant"
n=0

Then

d = n—1
%y(t) = ;nant

d? >
)= nln—1)a,
n=2

tn—2

Substituting the above back into the ode gives

Z n(n—1)a,t" % = (Z ant”> (1)

n=2

Which simplifies to

(i n(n —1) ant"_2> + (i ant”) =0 (2)

n=2

The next step is to make all powers of ¢ be n in each summation term. Going over each
summation term above with power of ¢ in it which is not already ¢t” and adjusting the
power and the corresponding index gives

Z n(n —1)a,t" 2 = Z (n+2)aps2(n+1)t"
n =2 n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of t are the same and equal to n.

(Z (n+2)ap2(n+1)t ) <Z antn> = (3)

For 0 < n, the recurrence equation is

(n+2)ap2(n+1)+a, =0 (4)



Solving for a2, gives
an
n+2)(n+1)

a/n+2 = _(

For n = 0 the recurrence equation gives

2a2+a0=0

Which after substituting the earlier terms found becomes

Qo
Ao = —E
For n =1 the recurrence equation gives
6a3 +a; = 0

Which after substituting the earlier terms found becomes

ai
as = —E
For n = 2 the recurrence equation gives
12&4 +ag = 0

Which after substituting the earlier terms found becomes

a4 = %o
Y
For n = 3 the recurrence equation gives
20@5 + a3 = 0

Which after substituting the earlier terms found becomes

a1
a5 = ——
° 7120
For n = 4 the recurrence equation gives
300/6 + a4 = 0



Which after substituting the earlier terms found becomes

ag = — -2
T 120
For n = 5 the recurrence equation gives
42&7 +as = 0

Which after substituting the earlier terms found becomes

5040

ary =

And so on. Therefore the solution is

00
y(t) = Z ant"
n=0
:a3t3+a2t2+a1t+a0+...

Substituting the values for a,, found above, the solution becomes

(t) = ag + art Lot — Sart® + Sagt + —art® +
Y = Go b T gfet T gt o g0t T et T

Collecting terms, the solution becomes

1 1 1 1
gmy=O—§ﬁ+ﬂ#)m+0—6ﬁ+ﬁﬁﬂarHXﬂ (3)

At t = 0 the solution above becomes

1 1 1 1
H=(1-2+—¢* t— 34+ —¢° t6
y() ( 9 +24 >01+( 6 +120 02+O( )

Replacing ¢ in the above with the original independent variable zsusing ¢ = x —1 results

y:<L_@—n_+@—n _@—¢)>MD

2 24 720

+(x—l_@_1f+@Fdf>VUH4N@—U%

6 120



Summary
The solution(s) found are the following

. (1 LA e i Rt ) J@)

(1)

+ (x— 1— (x_ﬁl) + (x1—201) )y’(1)+0(($— 1)°)

R PPN N N W W
/777777
J7 777777~~~
VP PSS SN
J 77 m==~NN\ N\

\
\
\
|
l
/
/
/
/

J T ————N

N\~ ———r )
\\\~——r//
NN\ N~/ [/
= NNNNNNSNSN e S S ) ]
NANNNNNSNS e S
—HNNNNNNN~~~——crr S S/

/177 AR
1777 AN
1177 VAV
1117 VAL
[ VAL
111 bbb
1 b
A L
LA Iy
AAAA Iy
ANAN vy
ANAN vy
NN oy

T
P P N GRANE N

Figure 1: Slope field plot

Verification of solutions

. (1 A e i Rt ) J)

+ (w— Gl + 1)5> Y1)+ 0((z—-1)°

6 120

Verified OK.
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1.1.1 Maple step by step solution

Let’s solve
y'+y=0
° Highest derivative means the order of the ODE is 2

i

Y
° Characteristic polynomial of ODE
r4+1=0
° Use quadratic formula to solve for r
° Roots of the characteristic polynomial
r=(=LI)
° 1st solution of the ODE
y1(z) = cos (z)
° 2nd solution of the ODE
yo(z) = sin (x)
° General solution of the ODE
y = a1y (z) + cay2(2)
° Substitute in solutions

y = cos () ¢; + cosin (z)

Maple trace

p

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful"

11



v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

‘0rder:=6;
'dsolve(diff (y(x),x$2)+y(x)=0,y(x) ,type="series',x=1);

2

y@y=<rfx_n-+@;;)>MD+<z—Lf$;D-+@_1)>D@MD+0@%

v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 51

LAsymptoticDSolveValue[y"[x]+y[x]==0,y[x],{X,1,5}]

y(z) = o (i(x _1yto %(m _1)2 4+ 1) + CQ(Elo(m _ 1)

12



1.2 problem 7.2.2
1.2.1 Maple step by step solution . . . . ... ... ... ... ... 201

Internal problem ID [5504]
Internal file name [OUTPUT/4752_Sunday_June_05_2022_03_04_58_PM_27593360/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.2.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "second__order__airy", "second__or-
der_ bessel__ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

y' +4xy =0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,y,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y,. Using
Taylor series gives

(x — x0)3
3!

(x — z0)2

2 y//(xo) +

y(z) = y(zo) + (z — 20) ¥ (z0) + y" (zo) + - - -

B a2 3
- yO + myo + 5f|:1:0,y0,y6 + ﬁf |w07y07y6 + e

0 n+2 dnf
_ / z
=Wt D gl der

x09y0ay(l)

13
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
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Therefore (6) can be used from now on along with
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To find y(z) series solution around z = 0. Hence

Fy = —4xy
dFy
F,=—
T dg

0F, OF, OF
_ 9% 9%, 90

ox oy Y oy’ Fo

= —4y — 4xy
dFy
F=—
T dx
OFy, OF, , OF
= F;
or + Oy v+ oy’ !
= —8y + 16y
dF;
F3=—=
87 dx
0F, OF, , O0F;
= F:
ox + oy v+ Yy’ ?
= 16z(zy’ + 4y)
dF3
Fy=—
YT dx
0F; OF: OF:
_ 3 + 3y/ + 3 F3

ox Oy oy’
= —64yz® + 96y’ + 64y

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

Fr=0

F = —4y(0)
Fy = —8y/(0)
F;=0

F, = 64y(0)

Substituting all the above in (7) and simplifying gives the solution as
y=(1- 2 + ixﬁ y(0)+ (z - L y'(0) + O(z°)
3 45 3

Since the expansion point z = 0 is an ordinary, we can also solve this using standard

16



power series Let the solution be represented as power series of the form

n=0
Then

E na,x" "

o0
n=1
o0
—2
n(n —1) a,x"
n=2

Substituting the above back into the ode gives

in (n—1)a,z" %= —4z (i anxn) (1)
n=2 n=0

Which simplifies to

(Z n(n —1) ana:"_2> + (Z 4x1+"an> =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

i nn—1)a,z" 2= i (n+2)aps2(l +n)z"
n =2 n=0

i 4zt ", = i 4a, 1%

n =0 n=1

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(i (n+2) ani2(l+n) x”) + <i 4an_1x”> =0 (3)

For 1 < n, the recurrence equation is

(n+2)ani2(l +n) +4a,-1 =0 (4)

17



Solving for a2, gives
4an—1
n+2)(1+n)

an+2 = _(

For n = 1 the recurrence equation gives

6(13 + 4a0 =0

Which after substituting the earlier terms found becomes

2a0
a8 =——3°
For n = 2 the recurrence equation gives
12a4 + 4&1 =0

Which after substituting the earlier terms found becomes

a1
ag = —E
For n = 3 the recurrence equation gives
20&5 + 4a2 =0

Which after substituting the earlier terms found becomes

a5=0

For n = 4 the recurrence equation gives

30&6 + 4a3 =0

Which after substituting the earlier terms found becomes

Qe — 40,0
T 45
For n = 5 the recurrence equation gives
42(17 + 4&4 = 0

18



Which after substituting the earlier terms found becomes

- 20,1

763

And so on. Therefore the solution is
o0
Y= Z apx"
n=0

3 2
=a3x” +ax” +a1x+ag+...

Substituting the values for a,, found above, the solution becomes

=a +ax——aw3——ax4+...
Yy 0 1 30 31

Collecting terms, the solution becomes

3
y = <1 — 2%) ao + (a:— %x“) a1 + O(z°)

At z = 0 the solution above becomes
213 1
y= (1 - %) c1 + (.’13 — 5.’1,'4) Cz+0(.’136)

Summary
The solution(s) found are the following

)= (1 _ §x3 + 4i5x6) 4(0) + (x - %x“) ¥ (0) +0(a°)

3
Y= (1_ 2%) c1 + (117— %.’E4) 62+O<x6)

Verification of solutions

<
Il

<1 — ga:?’ + %xﬁ) y(0) + (:c — %x‘l) y'(0) + O(z°)

Verified OK.

Verified OK.
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1.2.1 Maple step by step solution

Let’s solve
y' = —4dxy
° Highest derivative means the order of the ODE is 2

7

Yy
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y' +4zy =0

° Assume series solution for y

o k
y=> amz
k=0
O Rewrite ODE with series expansions
o Convert x - y to series expansion
(o ]
z-y=) apzt!
k=0

o Shift index using k— >k — 1
(e o]
Toy=> ap_1z*
k=1
o Convert y” to series expansion

v = apk(k — 1) z*2
k=2
o Shift index using k— >k + 2
' = apio(k+2) (k+1)zF
k=0

Rewrite ODE with series expansions

2a2 + (i (ak+2(k + 2) (k + 1) + 4ak_1) IEk) =0

k=1
° Each term must be 0
2a =0
° Each term in the series must be 0, giving the recursion relation
(k* + 3k + 2) agy2 + 4ar_1 =0
° Shift index using k— >k + 1

20



((k+1)*+3k+5) apss + 4ax = 0

° Recursion relation that defines the series solution to the ODE
= 4
y= Z a‘ka;k, k43 = _kz—i—g’l::—i-ﬁ’ 2(12 =0
k=0

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

g
‘0rder:=6;

‘dsolve(diff(y(x),x$2)+4*x*y(x)=0,y(x),type='series',x=0);

y(z) = <1 - 2?””3> y(0) + (x - %x‘l) D(y) (0) + O(«°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

‘AsymptoticDSolveValue[y"[x]+4*x*y[x]== »y[x1,{x,0,5}]

o) (- 2) (1)
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1.3 problem 7.2.3
1.3.1 Maple step by step solution . . . . ... ... ... ... ... 29]

Internal problem ID [5505]
Internal file name [OUTPUT/4753_Sunday_June_05_2022_03_04_59_PM_45143449/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.3.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

y' —zy=0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t=xz—-1
The ode is converted to be in terms of the new independent variable ¢. This results in

2

St — (E+ 1) () =0

With its expansion point and initial conditions now at ¢ = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.
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Let
y' = f(z,y,9)

Assuming expansion is at g = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at zo which must be the
case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using

Taylor series gives

(x — $0)2

y(z) = y(zo) + (z — 20) y'(w0) + 9

2

yll (zo) +

(x — m0)3
3!

B , T z
= Yo+ 2Yp + Eflwo,yo,y() + a-f |Z0,y0,y6 +o-

, e xn+2 dnf
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|

24
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To find y(z) series solution around z = 0. Hence

Fo=(t+1)y()

_dF,
=%
0F, OF,d OoF,
=20, =02 0 R
ot + Oy dty( )+ 0y (t) °
d
40+ ¢+ 1) ()
_dFR
=5
oF, OF, d 0F;
=1 Ty L F
ot oy i’ )+adity(t) !
d
= 22y(t) +y(0) (t+ 1)°
_ dF,
B="g
3F2 8F2 d aFQ
=242+ —— 2 F,
ot Oy dt? )+3dity(t) 2
d
=+ 1) (e + 1) (o) + 4000
_ dFy
Fa="5
0F; OF3d 0F3
=221 T8 0 F.
o oy @t )+6%y(t) ’

=+ 1"+ (0t+ 6) ( u(0)) + 1900

And so on. Evaluating all the above at initial conditions ¢ = 0 and y(0) = y(0) and
y'(0) = ¢'(0) gives

Fy = y(0)

Fy =y(0) +4'(0)
Fy =2y'(0) +y(0)
F3 =y/(0) + 4y(0)
Fy = 5y(0) + 6y'(0)
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Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1 1
— 1 T 42 —43 44 45
y(t) <+2t gt gt ot Tt )y(O)

13 14 1 5 1 6 ! 6
+ <t+6t + 358 T ot T gt y'(0) + O(t°%)

Since the expansion point ¢ = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y(t) = Z ant”
n=0

Then

d - n—1
pr (t) = Znant

n=1
d? > 9
gp¥(t) =2 _n(n—1)a.t""
n=2

Substituting the above back into the ode gives

Z nn—1)a,t" 2= (t+1) <Z ant"> (1)
n=2
Which simplifies to
(Z n(n —1)a,t"" 2) + Z (—t'*"a, Z (—a,t") =0 (2)
n=2 n =0

The next step is to make all powers of ¢t be n in each summation term. Going over each
summation term above with power of ¢ in it which is not already ¢" and adjusting the
power and the corresponding index gives

Z nn—1)a,t" % = Z (n+2) apy2(l +n)t"
n =2 n=0

Z (_t1+nan) — Z (_an—ltn)

n =0 n=1
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Substituting all the above in Eq (2) gives the following equation where now all powers
of ¢t are the same and equal to n.

(Z (n+2) apia(1l +n) t”) +> (—anat) + > (—ant") =0 (3)

n = 0 gives
2(12 — Qg = 0

Qo
a9 = 5
For 1 < n, the recurrence equation is
n+2)api2(l+n)—ap—1—a, =0 (4)
Solving for a,2, gives
Op-1 + ap
Qpio =
2T n+2)(1+n)
(5) Qyp, an_1

“nt2)(+n) mr2(d+n)

For n =1 the recurrence equation gives

6&3-&0—01:0

Which after substituting the earlier terms found becomes

For n = 2 the recurrence equation gives
12a4—a1—a2:O

Which after substituting the earlier terms found becomes

a1 Qo

“=15%9
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For n = 3 the recurrence equation gives
20a5—a2—a3=0

Which after substituting the earlier terms found becomes

_ G &
_'30'+ 120

as
For n = 4 the recurrence equation gives
30&6—0,3—(1420
Which after substituting the earlier terms found becomes

ao i a

ag = — + ——

°7 144 T 120
For n = 5 the recurrence equation gives

42&7-&4-&5:0

Which after substituting the earlier terms found becomes

. 11a1 +ﬂ
"~ 5040 560

a7

And so on. Therefore the solution is

y(t) = Z a,t"
n=0
=a3t3+a2t2—|—a1t+a0+...

Substituting the values for a,, found above, the solution becomes

aot? ay a a a a a
y(®) =ao+art+ 2o+ (T4 D)+ (G o7) (50 + 100 ) -

2 6 ' 6 12 24 30 ' 120

Collecting terms, the solution becomes

1, 1, 1, 1 1, 1 1
t)= (1422 + 3+ —tt + -t t4+ 3ttt Oo(t°
y(t) ( tot tgh ot tagh Jet (FHgt it it JutO)
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At t = 0 the solution above becomes

1, 1, 1, 1 1, 1 1
)= (14 24+ 82+ =t -t e A T t6
y(t) (+2 tgt tagt tagt Jat (Pt it gt J2 T O®)

Replacing ¢ in the above with the original independent variable xsusing t = x — 1 results
in

. <1+<x—21) MCED N D g a) )m
+<z—1+(m_61) —I—(szl) +(:1:1—201) +(x1—201) )y'(1)+0((z—1)6)

Summary
The solution(s) found are the following

2 6 24 30 + 144

+<x—1+(x;1) +(xI21) +(x1_201) +(x1_201) )y’(1)+0((x—1)6)

Verification of solutions

T <1+(:C_l)2+(x_1)3+(35_1)4+(3”_1)5 (x_1)6> y(1)

y=<1+(x—21) +(x—61) +(x;41) +(x501) +(x1—441) )y(l)
+<m—1—|—(x_61) +(xz21) +(x1_201) +(x1_201) >y’(1)+0((1’—1)6)

Verified OK.

1.3.1 Maple step by step solution

Let’s solve
y' —zy=0

° Highest derivative means the order of the ODE is 2
yll

° Assume series solution for y
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o0
Y= ap”
k=0

Rewrite ODE with series expansions

Convert z - y to series expansion

o
zoy=> apht!
k=0

Shift index using k— >k — 1

o0
Toy= > ap_17*
k=1

Convert y” to series expansion
o0
y' =" apk(k — 1) k2
k=2
Shift index using k— >k + 2
' = apo(k+2) (k+1)zF
k=0
Rewrite ODE with series expansions

24z + (f; (o (k+2) (k+1) — ax_s) xk) —0

k=1

Each term must be 0

2a9 =0

Each term in the series must be 0, giving the recursion relation
(k? + 3k +2) agy2 —ap_1 =0

Shift index using k— >k + 1

((k+1)*+3k+5) aps3 —ap =0

Recursion relation that defines the series solution to the ODE

o0
_ k __ ag __
y= kzoak-’” ) Qkt3 = Frqapre 202 =0
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful

<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

‘Order:=6;
'dsolve(diff (y(x),x$2)-x*y(x)=0,y(x) ,type='series’,x=1);

y($)=<1+(x—21) +(3:—61) +(33;41) +(33;01) )y(l)

" ( e ) D) (1) +0(a")

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78

LAsymptoticDSolveValue[y"[x]—x*y[X]== »,y[x],{x,1,5}]

y(z) = o (%(x —1) 4 i(w —1)t g %(x C1)P 4 %(x 124 1)
+02<ﬁ(x— 1)5+%(x— 1)4+é(x— 1)3—|—x—1>
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1.4 problem 7.2.4
1.4.1 Maple step by step solution . . . . . ... ... ... ...... 38]

Internal problem ID [5506]
Internal file name [OUTPUT/4754_Sunday_June_05_2022_03_05_00_PM_32450824/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.4.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

y”+yx2 =O

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y,. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2

2 y//(xo) +

y(x) = y(zo) + (& — 20) ¥ (o) + y" (o) + -+ -

B R 2
- yo + xyo + 5f|x07y07y(,) + ?f |xo,yo,y6 + e

oo xn+2 dnf
. !
=W D gl der

zO;yO:’yE)

32



But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fy = —ya?
dFy
F,=—
T dg

_ OF, N oF, , 4 0F,
- Oz oy Y oy’
= —z(zy + 2y)

dF,

T dr
_0R  9R ,, OR

or Oy y oy’
=yt — 4oy — 2y

Fo

Fy

Fy

dF;
F3=—=
27 dx
0F, OF, , O0F;
= F:
ox + oy v+ Yy’ ?
=y'z* + 8yz® — 6y
dF3
Fy=—
YT Az
OF3; OF: OF:
_ 3 + 3y/ + 3 F3

ox Oy oy’
= 12y'z® — 2%y(z* — 30)

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

=0
F, =0
Fy = —2y(0)
F3 = —6y/(0)
Fy=0

Substituting all the above in (7) and simplifying gives the solution as

= (1- 200 + (- Ba) o)+ 008

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

n=0
Then

E na,x" "

o0
n=1
o0
—2
n(n —1) a,x"
n=2

Substituting the above back into the ode gives

Z nn—1)a,z" %= — (Z anx") z? (1)

Which simplifies to

<Z n(n —1) anx”_2> + <Z x”+2an> =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

i nn—1)a,z" 2= i (n+2)ap2(n+1)z"
n =2 n=0

i nt+2, Z Ay 0T

n =0

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n+2) ani2(n+1) m”) + (Z an_gx”) =0 (3)

For 2 < n, the recurrence equation is

n+2)api2(n+1)+a,2=0 (4)
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Solving for a2, gives
QAp—2

n+2)(n+1)

an+2 = _(

For n = 2 the recurrence equation gives

12(14 + a9 = 0

Which after substituting the earlier terms found becomes

4y = —20
YT 12
For n = 3 the recurrence equation gives
20@5 +a = 0

Which after substituting the earlier terms found becomes

as = n
T 20
For n = 4 the recurrence equation gives
30@6 +ag = 0

Which after substituting the earlier terms found becomes

a6=0

For n = 5 the recurrence equation gives

42CL7 + a3z = 0

Which after substituting the earlier terms found becomes

a7:0

And so on. Therefore the solution is

o0
y= E anx"
n=0

3 2
=a3x” +ax"+a1x+ag+...

37



Substituting the values for a,, found above, the solution becomes

Collecting terms, the solution becomes

y = (1— f-é) ao + (x—2—10x5) a, + O(2°) (3)

At z = 0 the solution above becomes

xt 1 5 6
y= 1—E c+ $—2—0$U 02+O(x)

Summary
The solution(s) found are the following

y= (1 - f—;) y(0) + (x - %ﬁ) y(0) +0(a°) 1)

y = (1 - f—;) o1+ (z - 2—10:55> ¢+ 0(z°) (2)

Verification of solutions

y = (1 _ ”1”—;) y(0) + (x - %x“”) y'(0) +O(z°)

Verified OK.

Y= 1_x_4 c1+ m—ix5 ¢+ O(z°)
12) " 20 2
Verified OK.

1.4.1 Maple step by step solution

Let’s solve
y// — —yx2
° Highest derivative means the order of the ODE is 2
y//
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y// + yx2 =0
Assume series solution for y
y=> apx®
k=0
Rewrite ODE with series expansions
Convert x? - y to series expansion
2. y= Z akxk+2
k=0
Shift index using k— >k — 2
22 y= > ap_oa*
k=2
Convert y” to series expansion
v = apk(k — 1) z*2
k=2
Shift index using k— >k + 2
' = apio(k+2) (k+1)zF
k=0

Rewrite ODE with series expansions
6a3x + 2&2 + (Z (ak+2(k + 2) (k + 1) + ak_z) .’L‘k) =0

k=2
The coefficients of each power of x must be 0
[20,2 = 0, 6(13 = 0]
Solve for the dependent coefficient(s)
{GQ = 0, as = 0}
Each term in the series must be 0, giving the recursion relation
(k‘2 + 3k + 2) Gpt2 + ag—2 =0
Shift index using k— >k + 2
((k+2)°+3k+8) apsa+ar =0

Recursion relation that defines the series solution to the ODE

o0

— k — ag — —
y—kZOakx yOkta = —farrias @2 = 0,a3 =0

39



Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

‘Order:=6;
|dsolve(diff (y(x),x$2)+x 2%y (x)=0,y(x) ,type='series',x=0);

o) = (1= 5 ) 50+ (2 - 352°) D) 0) + 0"

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

-

AsymptoticDSolveValuel[y'' [x]+x~2*y[x]==0,y[x],{x,0,5}]

z° zt
y(x) — cz(x— %) —l—cl(l - ﬁ)
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1.5 problem 7.2.5
1.5.1 Solving asseriesode . . . . ... ... ... ... ... .. ... (41
1.5.2 Maple step by step solution . . . . ... ... ... ... ... . [48]

Internal problem ID [5507]
Internal file name [OUTPUT/4755_Sunday_June_05_2022_03_05_01_PM_36928345/index. tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

Yy —zy=0

With the expansion point for the power series method at x = 0.

1.5.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

Y = f(z,y)

Where f(z,y) is analytic at expansion point z,. We can always shift to zo = 0 if z is
not zero. So from now we assume zo = 0. Assume also that y(z¢) = yo. Using Taylor
series

(x — x0)3
3!

2
, r—z

(@) = (@) + (& — 20) v (an) + E 700

x? 2 A% f

SRt S, T e

xn—i—l ﬂ

(n+1)!dzn

y" (o) + y"(zo) + - -

+ ...

Z0,Y0

:y0+

n=0

Z0,Y0
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But

Oox

af _of  of
dz 83:+
af d
dx2_%( )
0
‘a—x(@) o)
af d
d:v3_£( )
8(

v)
= (Fn1)

6-Fn—l
bt (252 B

F, =

= f(z,
_d
dz

0

" oz
For example, for n = 1 we see that

F1 - (Fo)

o0F,
o °+(a—y) Fo
af of
8a: 8y

a
dx
9

Which is (1). And when n = 2

F="2(r)

OF,
+<®)%

Oor Oy Oy

H(D-5(0)

da
0
"oz’
0
" oz
0
" Oz

42

o d*f
) (3ydw2) f

And so on. Hence if we name F = f(z,y) then the above can be written as

of oOf of Of
(2o 50) (2

1)

3)

(4)



Which is (2) and so on. Therefore (4,5) can be used from now on along with

o0 xn—i—l
= Ea—
y(x) Yo + ; (n + 1) | |mo,y0 (6)
Hence
Fy==zy
dFy
FL=—
YT dx
OFy, OFy
=—+ —F
Ox + Oy 0
= (:c2 + 1) Y
dFy
F=—
7 dx
OF, OF;
=—+4+ —F
Oox + Oy !
= zy(z® + 3)
dF,
F3=—=
7 dg
oF, O0F,
=—+ —F
or + Oy 2
=y(z* + 62° + 3)
dF;
Fy=—
YT dx
OF; OF3
=—+4+ —F:
Ox + oy 5

= zy(z* + 102 + 15)

And so on. Evaluating all the above at initial conditions z(0) = 0 and y(0) = y(0) gives

Fr=0
Fy =y(0)
F,=0
F3 = 3y(0)
F,=0

Substituting all the above in (6) and simplifying gives the solution as

1 1
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Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

Y + q(z)y = p(x)

y —zy=0
Where

q(z) =~z

p(z) =0

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. z = 0 is called an ordinary point ¢(x) has a Taylor
series expansion around the point z = 0. z = 0 is called a regular singular point if ¢(x)
is not not analytic at = 0 but zq(z) has Taylor series expansion. And finally, = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point z = 0 is checked to see if it is
an ordinary point or not. Let the solution be represented as power series of the form

(e o]
Y= E a,x"
n=0

Then

00
yl — 2 nanxn—l
n=1

Substituting the above back into the ode gives

(Z nanx"_1> —z (Z anx”) =0 (1)
Which simplifies to

(Z nanx"_1> + Z (—z'"a,) =0 (2)
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

o0 o0

Z na,x” 1 = Z (14+n)a4nz
n =1 n=0

Z (—anan) _ Z (—an—1$n)

n =0 n=1

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

(i (14+n)ajinx ) + Z —ap-12") =0 (3)

n=0

For 1 < n, the recurrence equation is

(1+n)aitn —ap—1=0 (4)
Solving for ay,, gives
Ap—1
n == 5
L (5)

For n = 1 the recurrence equation gives
2&2 — Qg = 0

Which after substituting the earlier terms found becomes

ap
a9 = —
2

For n = 2 the recurrence equation gives

3a3—a1=0

Which after substituting the earlier terms found becomes

a3=0
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For n = 3 the recurrence equation gives
4a4 — ag = 0

Which after substituting the earlier terms found becomes

ap
Ay = —
8

For n = 4 the recurrence equation gives

5a5—a3=0

Which after substituting the earlier terms found becomes

a5:0

For n = 5 the recurrence equation gives

6&6—(14:0

Which after substituting the earlier terms found becomes

ao

%= 43

And so on. Therefore the solution is

o0
y=2 ana"
n=0
_ 3 2
=a3x” +ar”" +a1x+ap+ ...

Substituting the values for a,, found above, the solution becomes

= +_ 2+_ 1_|_
a aogx aogxr
y 0 20 80

Collecting terms, the solution becomes

y= (1 + %xQ + éx“) ao + O(z°)
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Summary

The solution(s) found are the following

1)
2)

12 14 6
5% +8x)y(0)+0(z)

(1+

1 1
§x2 + §x4) c+ O(:v6)

(1+
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Figure 2: Slope field plot

Verification of solutions

)00+ 0fe

L
8

2+

Verified OK.

1 1
§x2 + §x4) a +0(z%

y=(1+

Verified OK.
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1.5.2 Maple step by step solution

Let’s solve
y—xy=0
° Highest derivative means the order of the ODE is 1

/

Yy
° Separate variables
/A
y
. Integrate both sides with respect to x

f%dmzfxdw-l—cl
° Evaluate integral

1n(y)=§+01

° Solve for y
Y= e%+01

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

‘0rder:=6;
Ldsolve(diff(y(x),x)—x*y(x)=0,y(x),type='series',x=0);

y(z) = (1 + %ﬁ + éx‘l) y(0) + O(z°)
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v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 22

kAsymptoticDSolveValue [y' [x]-x*y[x]==0,y[x],{x,0,5}]

=
SalZ 42 41
y(x) 01(8 + 5 + )
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1.6 problem 7.2.6
1.6.1 Maple step by step solution . . . . . ... ... ... ...... Ha]

Internal problem ID [5508]
Internal file name [OUTPUT/4756_Sunday_June_05_2022_03_05_02_PM_29033608/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.6.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second_ order_ change_of variable on_ x_ method_ 1",
"second__order__change_of variable_on_ x_ method_ 2", "second order se-
ries method. Taylor series method"

Maple gives the following as the ode type

[_Gegenbauer, [_2nd_order, _linear, °~_with_symmetry_[0,F(x)]"]]

(_1,2+ 1) y”—xy’+p2y =0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,y,9)
Assuming expansion is at g = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at zo which must be the

case for an ordinary point. Let initial conditions be y(zo) = yo and y/'(zo) = yg. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2

2 y//(xo) +

y(x) = y(zo) + (& — 20) ¥ (o) + y" (o) + -+ -

B R 2
- yo + xyo + 5f|x07y07y(,) + ?f |xo,yo,y'0 + e

oo xn+2 dnf
. !
=W D gl der

£0,Y0,Y0
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f

51
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

2 !

pry—xy

Fo=—pm—"
dF,
R=20
' d

_OR , 0R, , OF,
- Oz Oy y oy’
(P*+2)2® —p> + 1)y — 3yp’x

Fy

(2> — 1)
dF
F,=—
T dx
OFy OF, , OF
= F
Oox + Oy v+ oy’ !
_ (=6p°2® + 6z p® — 62° — 9z) ' + ((p* + 11) 2® — p* + 4) yp?
(2> — 1)
dF,
Fy=—=
T da
0F, OF, , OF,
= F.
Ox + Oy v+ oy’ 2
((p* + 35p° + 24) z* 4 (—2p* — 25p° 4 72) 2° + p* — 10p* + 9) /' — 10yz((p* + 5)2° — p* + ) p°
(22— 1)"
dF;
Fy=—=
YT dr

_OF  OF ,  OF;

- Oz Oy y oy’

(14 =2) (—15z((p* + 15p> + 8) z* + (—2p* — 2p® + 40) 2° + p* — 13p® + 15) ¥/ + y((p* + 85p® + 274
(22 —1)°

F3

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = ¢/(0) gives

Fy=—y(0)p°

Fy = —y'(0)p* +¢/(0)

Fy = y(0) p* — 4y(0) p°

F3 = ¢/(0) p* — 10y/(0) p* + 9%/ (0)
Fy = —y(0) p° + 20y(0) p* — 64y(0) p?
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Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1 1 4
Y= (1 _ —.’I:2p2 4 —p4334 _ _p2x4 _ —.TGPG + %‘,Lﬁpél _ Ex6p2) y(O)

2 24 6 720
los, s, 1 54 1 55 3 5\, 6
—i—(x sPT o + oD’ — Sy + o y'(0) + O(z°)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(_:L_2+ 1) yll_xyl+p2y — 0

Let the solution be represented as power series of the form

o
y= g anz"
n=0

Then
y/ — Z nanxn—l
n=1
y' = Z n(n — 1) a,z" 2
n=2
Substituting the above back into the ode gives
(—z* +1) (Z n(n —1) anx"_2> —z (Z nanxn_l) + p? <Z anx"> =0 (1)
n=2 n=1 n=0

Which simplifies to

Z (—z"a,n(n—1))+ (Z n(n—1) anx"_2> + Z (—na,z")+ (Z p2anx”> =0 (2)

n =2 n=2 n=0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of z in it which is not already ™ and adjusting the
power and the corresponding index gives

o0

nn—1)az" % = Z (n+2)apy2(n+1)z"

n =2 n=0

54



Substituting all the above in Eq (2) gives the following equation where now all powers

of x are the same and equal to n.

o0

Z( z"a,n(n — 1)) (i n+2)ap2(n+1)x )

n =2

n = 0 gives

n =1 gives
a1p2 —a; + 6(13 =0
Which after substituting earlier equations, simplifies to

1 2+1
as = ——-a —-a
3 6110 61

For 2 < n, the recurrence equation is
—na,(n —1) + (n +2) any2(n + 1) — na, + ap® =0

Solving for a,2, gives

oo — an(n’® — p?)
"2 n+2)(n+1)

For n = 2 the recurrence equation gives

a2p2 —4a9+12a4, =0

Which after substituting the earlier terms found becomes

1 1

p ap — —aop

=9 6

%)

(3)

(4)

(5)



For n = 3 the recurrence equation gives

asp® — 9as + 20as = 0

Which after substituting the earlier terms found becomes

1 1 3
Yoy — —ap’ + —a

% = 1907 12 40

For n = 4 the recurrence equation gives

a4p2 — 16a4 + 30ag = 0

Which after substituting the earlier terms found becomes

a——L %a -I—l‘la—ia ?
6 = 72019 0 36p 07 45 0P

For n = 5 the recurrence equation gives

a5p2 — 25a5 +42a7; =0

Which after substituting the earlier terms found becomes

9= 50400 M T 144P N T 70MP T 112 ™

And so on. Therefore the solution is
o0
Y= Z O "
n=0
=a3x3—|—a2az2—|—a1x—|—a0+...

Substituting the values for a,, found above, the solution becomes

aop*z? 1 1
Y=ay+a1r — op + (——a1p2 + —a1> 73

2 6 6
1 1 1 1 3
+ (ﬂP‘lao - gaop2> zt + (mp‘lch - ﬁa1p2 + Em) o+ ...
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Collecting terms, the solution becomes

z’p? L 4 15\ 4
y‘(l_ 2 +(24p_6p)m)a° (3)
PN (L L 3 6
+<‘”+< 6+6>m+<120p B )T ) at o)

At z = 0 the solution above becomes

z°p? L, 15\ 4
y—(1—7+<24p—gp)$>01
2
AN DS R NS IR 6
+(x+( 6+6)$ +(120p 1210 +0)® %) ca +0(2°)

Summary
The solution(s) found are the following

1 1 1 1 1 4
y = (1 — 2’p’ + —plat — ZpPrt — 2%’ + 2%t — — 6p2) y(0) -

2 24 6 720 36 45
1 1 1 sa_1 52, 3 / 6
+(x sz —|—6w + 19027 T 13 p+40 y'(0) + O(z°)
z2p? 1 1
— 1__ 4 T2 4
Y ( 2 +<24p 6p>x)cl (2)

2
P N (L L3 6
+($+( 6+6)”’+(120p ? ty)?)etol)

Verification of solutions

1 1 1 1 1 4
— 1__22 _44__24__66 _64__62
y ( QTP Pt P — Pt g — ey Jy(0)

123 1 1 4 1 5. 2 3 5 / 6
+( AR AR TR A L AT L EAUREICY

Verified OK.
__p L1 a_12) 4
( 2 (24 6p)x>q
2
NN (L 13 6
+(+( 6+6)x+(120p P tg)? et o)

Verified OK.
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1.6.1 Maple step by step solution

Let’s solve
(=22 +1)y" —zy +p?y=0
° Highest derivative means the order of the ODE is 2

7

Yy

° Isolate 2nd derivative
Y ==+

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
Y+ - B =0

O Check to see if z is a regular singular point

o Define functions
(Pa(z) = 725, Po() = — £
o (1+z)- Py(z)is analytic at x = —1

(1+2) - Py(2))

1
2
r=-—

o (14 2)®- Py(z)is analytic at z = —1

(L+2)*- Py(z))| =0

r=—1

o z = —lis a regular singular point

Check to see if z is a regular singular point

To=—1

° Multiply by denominators
(@?—1)y"+zy —p’y=0

° Change variables using z = u — 1 so that the regular singular point is at u =0
(u? = 20) (y(w) + (u—1) (y(w) - PPy(w) =0

o Assume series solution for y(u)

)
y(u) — Z akuk+T
k=0

O Rewrite ODE with series expansions
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Convert u™ - (Ly(u)) to series expansion for m = 0..1

o)

u™ . (%y(u)) — kzoak(k- + T') uk-i—'r—l-i—m
Shift index using k— >k +1—m

um (%y(u)) = Z a’k-l-l—m(k +1—-—m+ 7") uktr
k=-1+m

Convert u™ - <j—;y(u)) to series expansion for m = 1..2

us (dd_:?y(u)) = > ap(k+7)(k+r—1)urtr—2tm
k=0

Shift index using k— >k +2 —m

u™ - (dd_quy(u)) = > aromk+2—-m+r)(k+1—m+r)urtr
k=—24m

Rewrite ODE with series expansions

e o]

—agr(—1+2r)u™ " + (Z (—ap1(k+1+7)2k+1+2r)+ap(k+p+71)(k—p+7))ur

k=0

apcannot be 0 by assumption, giving the indicial equation

—r(—=1+2r)=0
Values of r that satisfy the indicial equation
re{0,1}

Each term in the series must be 0, giving the recursion relation
—2k+i+r)(k+1+r)apm+ax(k+p+r)(k—p+71)=0

Recursion relation that defines series solution to ODE

oy = wktptr)(k—p+r)
k+1 = (k+1+2r)(k+1+7)

Recursion relation forr =0

_ ai(k+p)(k—p)
Ak+1 = (k2k+11§(k+11;

Solution for r =0
— S ar(k k—

Revert the change of variablesu =1+«

— 3 k ar (k+p)(k—
y:kzzoak(l‘i‘w) ,ak+1:w:|
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° Recursion relation for r = 1

Goss = % (k+p+1) (k—p+1)
k+1 — (2]6-1—2)(]{:-1—%)

° Solution for r = 1

= 1 ak (k+p+3) (k—p+3
o) = S ot rhann = i

° Revert the change of variablesu =1+«

[ ) P ag (k+p+1) (k—p+1
yzkgoak(l-i-x) T2 e = k((2:+22))(,£+%p) 2)}

° Combine solutions and rename parameters

| _ [ k e k41 _ ap(k+p)(k— b (ktpt+3) (k—pt+3)
y= (ch:Oak(ler) ) + (kgobk(Hw) 2) y Qg1 = Wabk—kl =2 (2k+22)(k+%) 2

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

<- linear_1 successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 71

‘Order:=6; ‘
\dsolve((1-x*2>*diff(y(x),x$2>—x*diff(y(x),x)+p‘2*y(x)=0,y(x),type='serieS"X=P>;

2 24
(p*—1)z® (p*—10p*+9)2°
+'(x 6 120

o) = (1- 25+ 20T )

)D@ﬂm+o@%
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v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 88

-

kAsymptoticDSolveValue [(1-x"2)*y "' [x]-x*y' [x]+p~2*y[x]==0,y[x],{x,0,5}]

—

45 2.5 2,3 345 8 4,4 24 2,2
p p p Yo p p p 11
6 40 6

y<x)_>62<120_ 2 6 "4 67 24 6 2

61



1.7 problem 7.2.7

Internal problem ID [5509]
Internal file name [OUTPUT/4757_Sunday_June_05_2022_03_05_03_PM_97615417/index.tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.7.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_ order_change_ of variable on_y_ method_ 2", "sec-
ond order series method. Taylor series method", "second_ order__ode_ non_ con-
stant__coeff _transformation_on_ B"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

(?+1)y" —2zy +2y =0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y'=f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the
case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y;. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2

2 y//(xo) +

y(x) = y(zo) + (& — 20) ¥ (o) + y" (o) + -+ -

B R 2
- yo + xyo + 5f|x07y07y(,) + ?f |xo,yo,y6 + e

oo xn+2 dnf
. !
=W D gl der

zO;yO:’yE)
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence
2zy — 2y
Fp=———-+-"
0 z?2+1
dFy

T dz
_0R  OR , OF

ox oy y ay'
=0
dF,
i (;l_lg‘ OF; OF;
1 1y 1
" Oz + Oy v+ oy’
=0
dF;

T dz
oF, OF, , OF
=24 +

2
E:
Oox oy y ay' ?
=0
dF3

T dz
_OF: O, OF

3

F.

ox Oy y oy’ 5
=0

By

Fy

Fy

F3

Fy

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

Fy = —2y(0)
Fi=0
F,=0
F;=0
F,=0

Substituting all the above in (7) and simplifying gives the solution as
y = (—2°+1) y(0) + zy'(0) + O(z°)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(+1)y" —2zy +2y =0
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Let the solution be represented as power series of the form

[e.e]
Y= g a,x"
n=0

Then
y = Z na,x" !
n=1
o0
y' = Z n(n — 1) a,z" 2
n=2

Substituting the above back into the ode gives

(£ +1) (Z n(n —1) anx"_z) — 2z (Z nana:"_1> +2 (Z ana:"> =0 (1)

n=2

Which simplifies to

<Zx apn(n— 1>—|—<§: n(n—1)a,z" ) i —2na,z") (i&znz”) =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z (n—1)a,z"" Z(n+2)an+2(n+1)x"

n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(;m"ann n—l) (2} n+2)ap2(n+1)x ) )

n=

+ i (—2na,z") + (Z 2anx"> =0
n=1 n=0

n = 0 gives
2(12 -I- 2&0 = 0
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a9 = —Qo
For 2 < n, the recurrence equation is
na,(n — 1) + (n + 2) apt2(n + 1) — 2na, + 2a, =0

Solving for a,,2, gives
. _an(n® = 3n+2)
T (n+2)(n+1)

For n = 2 the recurrence equation gives

120,4 =0

Which after substituting the earlier terms found becomes

a4=O

For n = 3 the recurrence equation gives

2a3 + 20a5 =0

Which after substituting the earlier terms found becomes

a5=0

For n = 4 the recurrence equation gives

6(14 + 30(16 =0

Which after substituting the earlier terms found becomes

a5=0

For n = 5 the recurrence equation gives

12a5 +42a7 =0

Which after substituting the earlier terms found becomes

a7=0
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And so on. Therefore the solution is

o0
y=)_ an"
n=0
_ 3 2
=a3r” t+ax” +a1;x+ag+...

Substituting the values for a,, found above, the solution becomes
Yy = —a0x2+a1x+ao—|—...
Collecting terms, the solution becomes
y=(—2*+1)ao+ a1z + O(z°) (3)

At z = 0 the solution above becomes

y=(—2+1) a1+ cox+ O(z°)

Summary

The solution(s) found are the following
y = (—2° +1) y(0) + zy'(0) + O(=°) (1)
y=(—2"+1)a +czr+0(z° (2)

Verification of solutions

y = (—2°+1) y(0) + zy'(0) + O(z°)

Verified OK.
Y= (—x2 + 1) c1 + cx + O(xﬁ)

Verified OK.
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

‘Order:=6; ‘
\dsolve((1+x*2)*diff(y(x),x$2)-2*x*diff(y(x>,x)+2*y(x)=0,y(X>,tYPe='SerieS',X=P>5

y(z) = y(0) + D(y) (0) z — z*y(0)

v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 18

LAsymptoticDSolveValue[(1+x‘2)*y"[x]—2*x*y'[x]+2*y[x]==0,y[x],{x,0,5}] J

y(z) > a(l1—2%) + oz
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1.8 problem 7.2.8 part(a)

Internal problem ID [5510]
Internal file name [OUTPUT/4758_Sunday_June_05_2022_03_05_04_PM_60342664/index.tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290

Problem number: 7.2.8 part(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

(+1)y"+y=0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y' = f(z,y,9)

Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at 2o which must be the
case for an ordinary point. Let initial conditions be y(z¢) = yo and y'(zo) = y}. Using
Taylor series gives

(1" — "EO) y//(wo) + (.’L’ - mo)

2 g Y @)+

y(z) = y(zo) + ( — 20) ¥ (20) +

- a2 2,
= yo + zyYo + Eflwo,yo,y() +gf R

o0 xn+2 dnf
_ /
=W+ D T o

/
Z0,Y0,Yg
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Y
Fy=—
0 241
dFy
F=0
'T dz
oF, OF, , OF,
= F
ox + Oy y oy’ 0
_ —z2y + 2zy — o
(z2 +1)°
dF;
P=21
T dx
oF, OF , OF
= F;
or + Oy v+ oy’ !
_ 4y'z® —byx? 4 4y’ + 3y
(2 +1)°
dF;
P22
37 dx
3F2 8F2 ’ 8F2
= F:
ox + Oy v oy’ ?
(=172 —102% + 7) i + 16yz(2® — 2)
(a2 +1)"
dF3
=45
YT dx

_ OF; N OF; 4 OF;
- Oz oy Y ay'
(84z° — 2423 — 108z) y' + (—63z* + 28222 — 39) y
(22 +1)°
And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = ¢'(0) gives

Fy

Fy = —y(0)
F = —y'(0)
Fy = 3y(0)
F3 =T7y(0)
Fy, = —39y(0)

Substituting all the above in (7) and simplifying gives the solution as

1 1 13 1 7
= (1= Zg24 Zpt = 2 46 R BT 3 I 6
] ( 5% +8x 5 Ox)y(O)—i—(w 6% —|—120x>y(0)+0(x)
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Since the expansion point £ = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(2?+1)y"+y=0

Let the solution be represented as power series of the form

o0
n=0
Then

na,z" !

QQ\
I
NE

n=1

n(n — 1) a,z" 2

s
I
Nk

||
)

n

Substituting the above back into the ode gives

(z% 4+ 1) (Z n(n —1) anx”‘2> + (Z anm") =0 (1)

n=2 n=0

Which simplifies to

n=2 n=0

<Z z"a,n(n — 1)) + (Z n(n —1) ana:"_z) + (Z ana:") =0 (2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

e o] e o]

Z nin—1)az" % = Z (n+2)api2(n+1)z"

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

n=0

(Z z"a,n(n — 1)) + (Z (n+2) ani2(n+1) x") + (Z ana:”> =0 (3)
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n = 0 gives
2&2 + ag = 0

n =1 gives
6a3+a1 =0

Which after substituting earlier equations, simplifies to

a1
as = ——

6

For 2 < n, the recurrence equation is

na,(n — 1)+ (n+2) apt2(n+1) +a, =0

Solving for a,2, gives

o = _On (n?—n+1)
2T (n+2) (n+1)
For n = 2 the recurrence equation gives
3as +12a4 =0

Which after substituting the earlier terms found becomes

ao
ag = g
For n = 3 the recurrence equation gives
Taz + 20a5 =0

Which after substituting the earlier terms found becomes

a5 = 10
>~ 120
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For n = 4 the recurrence equation gives

13a4 + 30&6 =0

Which after substituting the earlier terms found becomes

a __].304)
6™ "940

For n = 5 the recurrence equation gives

2las +42a7; =0

Which after substituting the earlier terms found becomes

a4 = 7a1
T 740

And so on. Therefore the solution is

o0
y=>_ ana"
n=0

=a3x3+a2z2+a1x+a0+...
Substituting the values for a,, found above, the solution becomes
2 3 1 4 7 5
Y=0ap+ T — =T — za12° + =T + —=a1 " + ...

2 6 8 120

Collecting terms, the solution becomes
1 1 1 7
Y= (1 — 5332 + §x4) ap + (x — 6:193 + on‘r’) a; + O(mG)
At z = 0 the solution above becomes
1 1 1 7
Yy = <1 — 5:1,'2 —|— §£B4> C1 —|— (IL‘ — 61'3 + EOIL‘E)) Cy —+— O(IL'G)

Summary
The solution(s) found are the following

1 1 13 1 7
(1t ta 19 6 L T s\ 6
( 5% g 240m)y(0)+(w 6% +120x)y(0)+0(x)
1 1 1 7
= 1——2 P _ =3 5 6
( 57 +8w)cl+(x 6% +—120x)02+0(x)
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Verification of solutions

1 1 13 1 7
(1t e 18 6 I S 6
y < 5% T 5T 240x)y(0)+ (x 57 +120x)y(0)+0(x)

Verified OK.

1 1 1 7
Y= <1 — sz + §x4) ¢+ (:c - 6:103 + m:ﬁ) cy + O(:c6)

Verified OK.
Maple trace

p

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 2F1 ODE
<- hypergeometric successful
<- special function solution successful”
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

‘0rder:=6;
‘dsolve((x“2+1)*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);

y(z) = (1 — %x2 + %x“) y(0) + (x - %x"’ + %f) D(y) (0) + O(=°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42

LAsymptoticDSolveValue[(x“2+1)*y"[x]+y[XJ==0,YEXJ,{X,0,5}]
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1.9 problem 7.2.8 part(b)
1.9.1 Maple step by step solution . . . . ... ... ... .. ... .. 80l

Internal problem ID [5511]
Internal file name [OUTPUT/4759_Sunday_June_05_2022_03_05_05_PM_12112889/index. tex]|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.8 part(b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

zy" +y=0

With the expansion point for the power series method at x = 1.

The ode does not have its expansion point at = 0, therefore to simplify the computa-
tion of power series expansion, change of variable is made on the independent variable
to shift the initial conditions and the expasion point back to zero. The new ode is then
solved more easily since the expansion point is now at zero. The solution converted
back to the original independent variable. Let

t=xz—-1
The ode is converted to be in terms of the new independent variable ¢. This results in
2

(¢+1) (00 +u(0) =0

With its expansion point and initial conditions now at ¢ = 0. The transformed ODE
is now solved. Solving ode using Taylor series method. This gives review on how the
Taylor series method works for solving second order ode.

Let
y' = f(z,y,9)
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Assuming expansion is at o = 0 (we can always shift the actual expansion point to

0 by change of variables) and assuming f(z,y,y’

) is analytic at xy which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y,. Using

Taylor series gives

= y(x0) + (= — 7o) ' (20) +

y(z) 5

(x — x0)2

(x — z0)3

y///(xo) + .

!/ z x3 !/
= yo + xyo + _f|x07y07y(,) + a‘f |$0,y0,y/0 + e

nt2 dnf
=1 -|-a:y0 +Z n+2)' dxn 0,50,Yp
But
df _0fds 8fdy Of dy "
dr  Ordr ' Oydx  dy dx
L
=35 T a,Y T oY (23)
g g / ﬁ
Or + Oy * oy’ a
& _d (&
dx2? o T \ dx
- ﬁ ﬁ 2 d_f ’ i ﬁ
= 5 (dz> + 8y<da:) Yy + 8y/(dz> f (2)
&f_a(&]
dz®  dx \ da?
0 (&f 0Lyt O (L
- a_(_) + (5_yd_> oy (d> ! !
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

0=
F1=

_y(®)
t+1
ko
dt
OF, OF,d OF,

o0 L Tl + 20 R
ot T oy dt? )+8%y(t) °

_ (=1 (Fv®) +y()

F3=

(t+1)*

dF

dt

OF, OF d OF,
— T v+ 7~
ot | By dt 8dy(t)
(2t +2) (Gy@) +y() (¢t - 1)

(t+1)>

aF,

dt

oF, O0F;d 0F;
2 22yt + ———F
ot ' By dt 8dy (1)
(2 — 4t —5) (Ly(t)) + (—4t +2) y(t)

(t+1)*

dF,

dt

OF; O0F3d 0F;3
2Tyt + ———F
ot ' By dt 8dy (1)’
(—6t2 + 12t + 18) (Ly(t)) — y(t) (¢ — 16t + 7)

(t+1)°

And so on. Evaluating all the above at initial conditions ¢ = 0 and y(0) = y(0) and

y'(0) = y/(0) gives

Fy=—y(0)

Fy =y(0) —y/(0)

F, =2y'(0) — y(0)

F3 = 2y(0) — 5y'(0)
Fy = —Ty(0) + 18y'(0)
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Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1 7
H=(1-2+3— —t*+ 5 — —¢8
y(t) ( 2ttt "ol teol ot VO

1 1 1 1
t _ _t3 _t4 _ _t5 _t6 / t6
+< 6t t1iat ~ b Tt )Y O +O®)

Since the expansion point ¢t = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be
2

(t+1) (%ya)) Lyt =0

Let the solution be represented as power series of the form

y(t) = Z ant”
n=0

Then

n=1

o0
= E na,t" !
o0

d? _
dto(t) Zn(n — 1) apt"?

n=2

Substituting the above back into the ode gives

(t+1) (i (n —1) ant™™ 2) (Z ant") =0 (1)

n=2
Which simplifies to

(Znt" Lan(n — 1)) + (i n(n —1) a,t"” 2) <Z ant"> =0 (2)

n=2

The next step is to make all powers of ¢ be n in each summation term. Going over each
summation term above with power of ¢ in it which is not already ¢t” and adjusting the
power and the corresponding index gives

o0

Znt” Ya,(n —1) Z(n+1)an+1nt”
n=1

(e o] e o]

Z nn—1)a,t"? = Z n+2)api2(n+1)¢t"
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Substituting all the above in Eq (2) gives the following equation where now all powers
of ¢t are the same and equal to n.

(i (n+1)apin t") + (i (n+2) api2(n+1) t") + (i ant"> =0 (3)

n = 0 gives
20,2 +ag = 0

ao
ag = ——

For 1 < n, the recurrence equation is

(mn+1)apin+ (n+2)ap2(n+1)+a,=0 (4)

Solving for a,2, gives

n%0n41 + Ny + an
n+2)(n+1)
(5) an (n? +n) anyy
T T m+2)(n+l) n+2)(n+1)

Apy2 = —

For n = 1 the recurrence equation gives

2a2+6a3+a1=0

Which after substituting the earlier terms found becomes

Qo a1
ag=—— —

6 6
For n = 2 the recurrence equation gives

6as + 12a4 + a2 =0

Which after substituting the earlier terms found becomes

ao ay
24 + 12

ay =

84



For n = 3 the recurrence equation gives

12&4 + 20&5 +as = 0

Which after substituting the earlier terms found becomes

Qo a1

=60 24
For n = 4 the recurrence equation gives

20&5 + 30&6 +a4 = 0

Which after substituting the earlier terms found becomes

e = 7&0 + ai
°7 720 " 40
For n = 5 the recurrence equation gives

30a¢ + 42a7 + a5 =0

Which after substituting the earlier terms found becomes

_ ].10,0 _ 17&1
~ 1680 1008

ar

And so on. Therefore the solution is
o0

y(t) = Z ant"
n=0

=G,3t3+0,2t2+0,1t+0,0+...

Substituting the values for a,, found above, the solution becomes

t2
y®) =ao+art— 0+ (LB P (— 0+ D) (- )P

2 "\6 6 24 ' 12 60 24

Collecting terms, the solution becomes

1 1 1 1 1 1 1
H=(1-282+32— —tt4+ —¢° t— 34 —tt— —¢° O(t8
y(t) ( 2t et Tart Tet )t Pttt Tapt )@t O®)
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At t = 0 the solution above becomes

1, 1 1 1 1 1 1
)= (1-t2+ 82— —t*+ 15 t— 34—t — 45 £
y(t) ( 2ttt Tttt )t (et Tt Tart )2t o)

Replacing ¢ in the above with the original independent variable xsusing t = x — 1 results
in

2 6 24 60 720
+(x—l—cﬁ_n?+@_1f—(x_na+@;;f>yu)+0«x—nﬂ

6 12 24

Summary
The solution(s) found are the following

2 6 24 60 720

+ (x PR C - DAy € 121) _= ;11) C 4_01) ) y(1) + O((z - 1)°)

y:<1_(:c—1)+(x—1) z-1* (z-1) 7(x—1))y(1)

Verification of solutions

y = (1_($—1)2+(x—1)3 ($—1)4+(.’IJ—1)5 7(1’—1)6> "

2 6 24 60 720

+<%J—@;D+@&D—@;D+@LD>MHHMWJﬁ

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
y'r+y=0

° Highest derivative means the order of the ODE is 2
yll

° Isolate 2nd derivative
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yll — Z
Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y// +¥=0

Check to see if xg = 0 is a regular singular point

Define functions

[Po(2) =0, Ps(2) = ;]

z - Py(x) is analytic at z = 0

(z-P(z))| =0

=0

z? - P3(z) is analyticat z = 0

(z2 - P3(z)) =0

z=0

x = Qis a regular singular point
Check to see if o = 0 is a regular singular point
zo=0
Multiply by denominators
Yz +y=0
Assume series solution for y
Y= i T
k=0
Rewrite ODE with series expansions

Convert x - y” to series expansion

-y = ]iak(k +7)(k+r—1)zkt!

Shift index using k— >k + 1

z-y = kilakﬂ(k +1+7)(k+7)z*tr

Rewrite ODE with series expansions

aor(—1+7)z 1" + (ki—o:o (ags1(E+1+7)(k+7)+ ax) zk+’") =0
apcannot be 0 by assumption, giving the indicial equation

r(=1+7)=0
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Values of r that satisfy the indicial equation

r € {0,1}

Each term in the series must be 0, giving the recursion relation
ap1(k+1+7r)(k+71)+ar,=0

Recursion relation that defines series solution to ODE

— ag
Ak+1 = ~ e itr)(ktr)

Recursion relation forr =0

— ____ag
Ak+1 = ~krDk

Solution forr =0

00
— k — Ak
Y= kzoakx y Ak+1 = _(k+1)k:|

Recursion relation forr =1

Api] = — ek
k+1 = 7 k+2)(k+1)

Solution forr =1

B 00
— k+1 — ag
y= kz_oakw y Ok+1 = (k+2)(k+1)}

Combine solutions and rename parameters

s >, a b
v (kgo akxk) - (1?::0 bkzkH)  Qkt1 = ~ iy Okl = ~ Gy (erD)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

‘Order:=6;
| dsolve (x*diff (y(x),x$2)+y(x)=0,y(x) ,type='series’,x=1);

Mﬂzo_w;n+@;n_@én+@&n>w)

+ ( e ) D(y) (1) +0(s")

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78

LAsymptoticDSolveValue[x*y"[x]+y[X]== »y[x],{x,1,5}]

y@y+qc%@—n?—igpwf+%@_1f_%@_1y+g
+cz(—i(x— 1)° + %(m— D= Z(z—-1)3+2— 1)
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1.10 problem 7.2.101
1.10.1 Maple step by step solution . . . . . ... .. ... .. ..... 96!

Internal problem ID [5512]
Internal file name [OUTPUT/4760_Sunday_June_05_2022_03_05_06_PM_24258052/index . tex]|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.101.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

Y +2yx® =0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y,. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2

2 y//(xo) +

y(x) = y(zo) + (& — 20) ¥ (o) + y" (o) + -+ -

B R 2
- yo + xyo + 5f|x07y07y(,) + ?f |xo,yo,y6 + e

oo xn+2 dnf
. !
=W D gl der

zO;yO:’yE)
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fy = —2ya3
dFy
FL=—
YT d

_ OFy 4 OF, J o+ OF,
oz Oy oy’
= —22%(zy’ + 3y)
dFy

T dr
_OR  0R , OR

or Oy y oy’
= —122%y + 4zy(2° — 3)
dFy

T dr
_O0F, OF, , OF

Oox Oy oy
= 4(3:6 - 9w) y + 12y(49v5 — 1)
dF3

" dr
OF; 0OF3; , OF;
= F.
oz + Oy v+ oy 3

= —8ya® + T2y'2° + 312yz* — 48y

Fo

Fy

Fy

F;

Fy

Fy

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

F,=0
F,=0
F,=0
F3 = —12y(0)
Fy = —48y/(0)

Substituting all the above in (7) and simplifying gives the solution as

= (1- 20+ (- a8 o) 008

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

n=0
Then

E na,x" "

o0
n=1
o0
—2
n(n —1) a,x"
n=2

Substituting the above back into the ode gives

in n—1)a,x" 2:—2<§:anx") z? (1)
n=2 n=0

Which simplifies to

(Z n(n —1) ana:"_2> + (Z 2x”+3an> =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

i nn—1)a,z" 2= i (n+2)ap2(n+1)z"
n =2 n=0

i 2z 3a, = i 2a,,_3T

n =0 n=3

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(i (n+2) ania(n +1) w") + <i 2an_3x"> =0 3)

For 3 < n, the recurrence equation is

(n+2)api2(n+1) 4+ 2a,-3 =0 (4)
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Solving for a2, gives
2an—3
n+2)(n+1)

an+2 = _(

For n = 3 the recurrence equation gives

20&5 + 2a0 =0

Which after substituting the earlier terms found becomes

ao
a5 = ——
T 10
For n = 4 the recurrence equation gives
300'6 + 2a1 =0

Which after substituting the earlier terms found becomes

g = —
T 15
For n = 5 the recurrence equation gives
42(17 + 2a2 =0

Which after substituting the earlier terms found becomes

CL7:0

And so on. Therefore the solution is

oo
y=>_ aa"
n=0

3 2
=a3r” +ax” +a1x+ag+...

Substituting the values for a,, found above, the solution becomes

1
y=a0—|—a1x—Ea0m5+...
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Collecting terms, the solution becomes

y = (1 — f—;) ao + a1z + O(z°) (3)

At z = 0 the solution above becomes

x? 6
Y= 1_E Cl+CQ$+O(x)

Summary
The solution(s) found are the following

v=(1-5)v0 + (2= 1£2°) 0+ O(=") )
y = (1 - f—;) ¢1 + cx + O(zf) (2)

Verification of solutions

v=(1-35) 0 + (2= 52*) v0) + O)

Verified OK.

x5 6
Y= I_E cl+02x—|—0(m)

Verified OK.

1.10.1 Maple step by step solution

Let’s solve
y// — _2y$3
° Highest derivative means the order of the ODE is 2

7

Y
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y" +2yz3 =0

° Assume series solution for y
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o0
Y= apz”
k=0

Rewrite ODE with series expansions

Convert x2 - y to series expansion

o0
2y =3 apatts
k=0

Shift index using k— >k — 3

o0
3., — k
-y = > ax_3x
k=3

Convert y” to series expansion
o0

y' =" apk(k — 1) k2
k=2

Shift index using k— >k + 2

' = apio(k+2) (k+1)zF
k=0

Rewrite ODE with series expansions

12a422 + 6asz + 2as + (Z (ags2(k+2) (kK +1) + 2ax_3) wk) =0
k=3

The coefficients of each power of x must be 0

[2a2 = 0,6a3 = 0,12a4 = 0]

Solve for the dependent coefficient(s)

{a2 =0,a3 =0,a4 = 0}

Each term in the series must be 0, giving the recursion relation
(k? + 3k + 2) agy2 + 2a5_3 =0

Shift index using k— >k + 3

((k+3)* + 3k +11) azy5 + 2a, = 0

Recursion relation that defines the series solution to the ODE

00
— k — 2a — — —
y= Z apx”, Q45 = _k2_|_gk’;+20aa'2 - Oa as = 07 a4 = 0
k=0
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

‘Order:=6;
‘dsolve(diff(y(x),x$2)+2*x“3*y(x)=0,y(x),type='series',x=0);

5

) = (1-35) w0 + Do) O + 0"

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 20

-

AsymptoticDSolveValuel[y'' [x]+2*x~3*y[x]==0,y[x],{x,0,5}]

N\

5
y(x) = <1 - f—o) + cox
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1.11 problem 7.2.102

1.11.1 Existence and uniqueness analysis. . . . . . . . ... ... ... 99

Internal problem ID [5513]
Internal file name [OUTPUT/4761_Sunday_June_05_2022_03_05_07_PM_54975383/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.102.

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "second__order__airy", "second__or-
der_ bessel__ode", "second order series method. Ordinary point", "second
order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

With initial conditions
[y(0) = 0,'(0) = 0]

With the expansion point for the power series method at = 0.

1.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Yy +p@)y +ql@z)y=F

Where here
p(z)=0
q(z) = -z
F = 1
1—=2z
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Hence the ode is

1

y —rTy=

The domain of p(z) =0 is
{—00 <z < o0}

And the point zo = 0 is inside this domain. The domain of ¢(z) = —z is

{—o0 <z < o0}

And the point xq = 0 is also inside this domain. The domain of F' = ﬁ is

{r<lvi<az}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(2,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y. Using
Taylor series gives

(x — x0)3
3!

(x — x0)2

2 Yy (z0) +

y(ZE) = y(ivo) + (CL’ — $0) yl(iBo) + y”l(g;o) + ...

, . x? 3,
= yO + xyo + _f|x0,yo,y6 + g‘f |w0=y07y6 + Tt

n+2 dn f

_yo+xyo+2—n+2)ldwn

x07y07y6
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

2 _ —
g vy =1
z—1
dFy
=20
YT de
0Fy O0OF, , OF,
= E
or + Oy v+ oy’ 0
_ z(z— 1%y +1+ (z—1)%y
(¢ —1)°
dF
=1
7 dx
BFl 8F1 ’ aFl
= F
oz + Oy v+ oy !
2z - Dy +a22(z—1)%y— 23+ 222 — 2z — 2
(@ —1)°
dF;
=22
T dx
BFQ aFg ’ aFQ
= F:
oz + oy v+ oy 2
2(z — 1)y +4dz(z — 1)y — 223 + 722 — 8z + 9
(z—1)"
dF3
Fy=—=
T
OF; OF; , OF;
— F

or Oy y oy’
6x(x —1)°y + (2® +4) (x — 1)°y — 2 + 42° — 62* + 62 — 92 + 10z — 28
(& 1)
And so on. Evaluating all the above at initial conditions z = 0 and y(0) = 0 and
y'(0) = 0 gives

F=1
F,=1
F,=2
F;=9
Fy =128

Substituting all the above in (7) and simplifying gives the solution as

_:v_2+117_3+£1:_4+3_:)35+7_:)36+0(x6)
Y=%9 76 T127 10 T 180
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_T T T 3 T o)
Y=9 7% T127 40 " 180

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

o0
y=> anz"
n=0
Then

n=1

Y =
y' = Z n(n — 1) a,z" 2

n=2

o0
= g na,z" !
o0

Substituting the above back into the ode gives

- (Eow)es(or)r

z—1
Expanding —ﬁ as Taylor series around x = 0 and keeping only the first 6 terms gives

=+t + 22+ +c+1+...

r—1
=+t +22+ 22+ +1

Hence the ODE in Eq (1) becomes
(in(n - 1)anx"_2> - x(iaw") =2+t +¥+2? 2 +1
n=2 n=0
Which simplifies to
(in(n—l anz" ) i an) =" +z'+2*++z+1 (2)
n=2 =0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
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power and the corresponding index gives

nn—1)a,z" 2= Z (n+2)ap2(l +n)z"
n =2 n=0
> (=2 man) = (—apa1z”)
n =0 n=1

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n +2) anyo(1+n) x") +> (mapaz) =2’ +a' + 28+ +z+1 (3)

n=0 n =1
n = (0 gives
(2a2)1=1
2(1,2 =1
Or
1
Qa9 = 5

For 1 < n, the recurrence equation is
(n+2) anpo(l14+n)—ap)z" =2 +2* + 22 + 22 + 2+ 1 (4)
For n = 1 the recurrence equation gives
(6as —ap)z =1z

6a3—a0=1

Which after substituting the earlier terms found becomes

76" 6

For n = 2 the recurrence equation gives

(12a4 — a;) 2° = 2?

12&4-&1 =1
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Which after substituting the earlier terms found becomes

For n = 3 the recurrence equation gives
(20as — ay) z* = 2°
20a5 —as =1
Which after substituting the earlier terms found becomes

3
a5=E

For n = 4 the recurrence equation gives
(30as — a3) z* = z*
30@6 — as = 1
Which after substituting the earlier terms found becomes

67180 " 180

For n = 5 the recurrence equation gives

(4207 — a4) 2° = °

42(17 — Q4 = 1

Which after substituting the earlier terms found becomes

13 ax

%= 504 T 504

And so on. Therefore the solution is

o0
y= E anx"
n=0

3 2
=a3x” +ax"+a1x+ag+...
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Substituting the values for a,, found above, the solution becomes

2 6 6

z? 1 ap) 3 1
y=a+aur+ s+ |\z+— T+ E—'_

Collecting terms, the solution becomes

1+ ) g+ (o4 2ot
= —_ a X —X
Y 6 )% 12

At z = 0 the solution above becomes

= 1+9”—3 ot (o4 —at c+x—2+x—3+x—4+—+0
V= 6) 127 )" 276 T 12
2 ¥zt 32° 6
y—§+E+E+E+O(CL’)
Summary
The solution(s) found are the following
z2 ¥ ozt 325 T2b 6
y—z+€+1—%+4—05+r80+0(1’)
¢ Tzt 3z 6
y—5+€+ﬁ+m+o(m)
Verification of solutions
2 2zt 32 TLb 6
e R TR IR T R
Verified OK.
2 8zt 32° 6
y—E+E+E+E+O(.’L’)
Verified OK.

o x4+3—x5+
12 40
2 ¥ ozt 32° 6
a1+E+E+E+E+O<x>
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3z

40
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful
<- special function solution successful

<- solving first the homogeneous part of the ODE successful"

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

e B

Order:=6;
‘dsolve([diff(y(x),x$2)—x*y(x)=1/(1—x),y(O) = 0, D(y(0) = O],y(x),type='serie#',x=0);

1o 1 1 4 3 5 6
y(x)—2x + gt T+ o + O (z°

v Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 56

‘AsymptoticDSolveValue[{y"[x]-x*y[x]==1/(1-X),{}},y[x],{X,0,5}]

@)= T (T i)+ (T )+ S
I 70 T12 72\ 127%) T T 6 2
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1.12 problem 7.2.103
1.12.1 Maple step by step solution . . . . ... ... .. ... ..... 117

Internal problem ID [5514]
Internal file name [OUTPUT/4762_Sunday_June_05_2022_03_05_09_PM_82704742/index. tex]|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.2.1 Exercises. page 290
Problem number: 7.2.103.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

szyll—y:O

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
r*y —y=0
The following is summary of singularities for the above ode. Writing the ode as
y' +p(z)y +4q(z)y =0
Where

Table 9: Table p(x), ¢(x) singularites.

q(z) = — 2

singularity type

p(z) =0
singularity | type

z=0 “regular”
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Combining everything together gives the following summary of singularities for the ode

as
Regular singular points : [0, o]

Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
x2yll _ y — 0

Let the solution be represented as Frobenius power series of the form

00
y = 2 anxn-l—r
n=0

Then
y/ — Z (n + 7”) anzn+r—1
n=0
y' = Z (n+7)(n+r—1)az"t 2

3
I
o

Substituting the above back into the ode gives

z? (Z (m+r)(n+r—1) anx"”_?) - (Z anx“”) =0

n=0

Which simplifies to

(Zx”‘” (n+r (n+r—1>—|—z (—a,z™*") =0

(1)

(24)

The next step is to make all powers of z be n + r in each summation term. Going

over each summation term above with power of z in it which is not already z"*" and

adjusting the power and the corresponding index gives Substituting all the above in

Eq (2A) gives the following equation where now all powers of = are the same and equal

ton+r.

(anw (n+r (n+r—1>+z (—anz™") =0
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The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)—a,z"" =0
When n = 0 the above becomes
z'aor(—1471) —apz" =0

Or
(z'r(=1+71)—2")ap=0

Since ag # 0 then the above simplifies to
(rQ—r—l)x’"zo
Since the above is true for all x then the indicial equation becomes
rP—r—1=0

Solving for r gives the roots of the indicial equation as

™ = +

To =

o Sl S

N = N =

Since ag # 0 then the indicial equation becomes
(1"2 —r— 1) ' =0

Solving for r gives the roots of the indicial equation as Since r; — 7o
integer, then we can construct two linearly independent solutions

yi(z) = 2" (Zanz>
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We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ap is arbitrary and taken as ay = 1. For 0 < n the recursive equation is

a,(n+r)(n+r—1)—a,=0 (3)

Solving for a,, from recursive equation (4) gives

a, =0 (4)

5
2

[

Which for the root r = % + becomes

a, =0 (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % + ‘/75 and after as more terms are found using the above recursive equation.

n | Gy | Gy

Qo 1 1

For n = 1, using the above recursive equation gives
ay = 0

And the table now becomes

Qo 1 1
ai 0 0

For n = 2, using the above recursive equation gives
Qg = 0

And the table now becomes

o

a1

a2
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For n = 3, using the above recursive equation gives
az = 0

And the table now becomes

n | Gny | Gy
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0

For n = 4, using the above recursive equation gives
ay = 0

And the table now becomes

n | Gny | Gy
ag | 1 1
a; | 0 0
as | 0 0
as | 0 0
as | O 0

For n = 5, using the above recursive equation gives
a5 = 0

And the table now becomes

n | Gnr | Gn
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0
as | O 0
as | 0 0
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Using the above table, then the solution y; () is

1, V6
yi(z) = 2212 (ao + a1z + aox? + asz® + asx* + a5z’ + agzb.. )

#(1+0(%)

1
= (1;§+

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 0 < n the recursive equation
is

bo(n+r)(n+r—1)—5b,=0 (3)

Solving for b, from recursive equation (4) gives

by =0 (4)
Which for the root r = 3 — ‘/75 becomes

b, =0 (5)

At this point, it is a good idea to keep track of b, in a table both before substituting

r= % - ‘/75 and after as more terms are found using the above recursive equation.

n bn T bn

)

by | 1 1

For n = 1, using the above recursive equation gives

by =0
And the table now becomes
n | by, | by
by | 1
bi | 0 0

For n = 2, using the above recursive equation gives
b2 = 0

And the table now becomes

114



n | by | bn
bo|1 |1
by |0 |0
b |0 |0

For n = 3, using the above recursive equation gives

And the table now becomes

n | by | b
bo|1 |1
by |0 |0
b, |0 |0
b3 |0 |0

For n = 4, using the above recursive equation gives
by =0

And the table now becomes

S

S
3
]

S
3

S

N
o|lo| oo |
S| oo |O |

For n = 5, using the above recursive equation gives
b5 =0

And the table now becomes
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S

o
3
5

o
S

S

3
| o|lo|Oo|O |
o|o|Oo| OO |~

Using the above table, then the solution y,(x) is

yo(x) = it (bo + bz + byx? + b3z + byt + bsa® + bexb. ..

2% (1+40(a%)

Therefore the homogeneous solution is

Yn(r) = ey () + coya(z)

)
— ot (14 0(a%)) + ezt =% (14 0(a9))

Hence the final solution is

Y=1Yn
— @t 7 (14 0()) + ozt~ 7 (14 0(a°))
Summary
The solution(s) found are the following
L

y= clx%"'é (1+ O(w6)) 4 o2

Verification of solutions

> (1+0(2%)

\3
3

2 (14 0(2%) + 22~ (14 0(a%))

1,
y:cl 2

Verified OK.
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1.12.1 Maple step by step solution

Let’s solve
CIJ2y" —y= 0
° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
V' =%
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
"n_ z_y2 =0
° Multiply by denominators of the ODE
wa/l —y= 0
° Make a change of variables
t=1In(z)

O Substitute the change of variables back into the ODE
o Calculate the 1st derivative of y with respect to x , using the chain rule
y = (4y()t'(z)

o Compute derivative

y/ _ %y(t)

o Calculate the 2nd derivative of y with respect to x , using the chain rule
v = (Gy®) ¢ +1'() (2y(®))

o Compute derivative

d2 d
" __ my(t) _ Ey(t)
- x? x2

Substitute the change of variables back into the ODE

a2 d
.’IJ2 ( dtzx?;(t) _ dtxyz(t)> _ y(t) =0

° Simplify
a2y(t) — %y(®) —y(6) =0
° Characteristic polynomial of ODE

r?—r—1=0
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° Use quadratic formula to solve for r

1+(v)
=T 2
° Roots of the characteristic polynomial
=33+ 7)
° 1st solution of the ODE
yi(t) = (i)t
° 2nd solution of the ODE
ya(t) = (%)
° General solution of the ODE
y(t) = cryi(t) + caya(?)
) Substitute in solutions
y(t) = cle(%_é)t + 026(%+§)t
o Change variables back using ¢t = In (z)
y = cle@_é) @ 4 CQeln(z)GJr%)
° Simplify

Y=z <x‘§cl + x§02>

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 39

‘0rder:=6;
|dsolve(x"2+diff (y(x),x$2)-y(x)=0,y(x) ,type='series',x=0);

y(z) = vz <93_§C1 + $§02> + O0(z%)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38

LAsymptoticDSolveValue [x~2xy'"' [x]-y[x]==0,y[x],{x,0,5}]

(19

y(x) = c1z? (1-v5)

1
+ 621172
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2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

Chapter 7. POWER SERIES METHODS. 7.3.2

The method of Frobenius. Exercises. page 300

problem 7.3.101
problem 7.3.102 . .
problem 7.3.103 . .
problem 7.3.104 (d)
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2.1 problem 7.3.3
2.1.1 Maple step by step solution . . . . ... ... ... ... ... 128

Internal problem ID [5515]
Internal file name [OUTPUT/4763_Sunday_June_05_2022_03_05_10_PM_89001034/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.3.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

o' + 2y +(1+2)y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
o2+ 2y +(1+2)y=0

The following is summary of singularities for the above ode. Writing the ode as
y' +p()y +q(z)y =0

Where
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Table 11: Table p(z), ¢(z) singularites.

p(z) = ; q(z) = 5
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
a2y +zy' + (1+2)y=0

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

x (Z(n—l—r)(n—l—r—l)anx" T") )

n=0
+ <Z (n+r) anx””_l) +(1+2z) (Z anz"+’"> =0
n=0 n=0
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Which simplifies to

(Z " a,(n+71)(n+1— 1)> + (Z " a,(n + 7")) (24)

n=0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

oo oo
E :x1+n+ran — E :an_lxn+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + r.

<Zx”” n-l—r)(n—l—r—l) (Zx"“ n-l—r) (2B)

n=

+ (; anx"”) (Z A1 T" > =0

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)+2"""a,(n+71) +a, "t =0
When n = 0 the above becomes
z"aor(—1+7r) + z"aer + apx” =0

Or
(@"r(=14+r)+2"r+2")ay=0
Since ag # 0 then the above simplifies to

(r2 + 1) =0
Since the above is true for all x then the indicial equation becomes

r+1=0
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Solving for r gives the roots of the indicial equation as
r=1
Tog = —1
Since ag # 0 then the indicial equation becomes
(r’+1)z"=0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

Or

n=0
yo(z) = Z b,z" "

n=0

y1(z) is found first. Eq (2B) derived above is now used to find all a,, coefficients. The
case n = ( is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ap = 1. For 1 < n the recursive equation is

a,(n+r)(n+r—1)+a,(n+r)+a,+a,-1 =0 (3)

Solving for a, from recursive equation (4) gives

Ap—1

an = (4)

24 omr4r2+1

Which for the root r = 7 becomes

Ap—1

tn = (2 +n)

()

At this point, it is a good idea to keep track of a,, in a table both before substituting
r =1 and after as more terms are found using the above recursive equation.
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Qo 1 1

For n = 1, using the above recursive equation gives

1
7= r2 4 2r +2
Which for the root r = 7 becomes
1 2
“="5%%
And the table now becomes
no| Gny an,
ao 1 1
1 1, 2
@ |~z | 5t s

For n = 2, using the above recursive equation gives

1
2= (r242r+2)(r2+4r +5)
Which for the root r = 7 becomes
oo L _ 3
27740 40
And the table now becomes
’I’L arn,'r an
Qo 1 1
1 1, 2
N R —5t%
a 1 1 _ 3
2 | F242r+2)(r2+4r+5) 40 40

For n = 3, using the above recursive equation gives

1

= T 2+ 2r +2) (r2 + 4r + 5) (12 + 6r + 10)
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Which for the root r = 7 becomes

b 3 i
7520 ' 1560

And the table now becomes

n | Gpgr an
ao 1 1
1 1, 2
M | ~ETarrs 5t %
a 1 _1 _ 3
2 | P24 2r2)(r244r+5) 40 ~ 40
ae | — 1 3 4 T
3 (r24+2r+2)(r2+4r+5)(r2+6r+10) | 520 ' 1560

For n = 4, using the above recursive equation gives

1

U 2r +2) (P2 + 4r + 5) (r2 + 6r + 10) (r2 + 87 + 17)

Which for the root r = 7 becomes

1 i
Oy = ———— —
2496 12480
And the table now becomes
no| Gy an
ao 1 1
1 1, 2

a1 r24+2r+2 5 + 5
a 1 _1 _ 3

2 | (r242r+2)(r2+4r+5) 40 ~ 40
aa | — 1 EN

3 (r24-2r+2)(r2+4r+5) (r2+6r+10) 520 ' 1560
a 1 i

4 | (r242r+2)(r2+4r+5) (r2+6r+10) (r2+8r+17) 2496 12480

For n = 5, using the above recursive equation gives

1

9= T2 1 2r +2) (12 + 4r 1 5) (2 + 61 + 10) (2 + 8 + 17) (2 + 107 + 26)

Which for the root r = ¢ becomes
9
© 603200 361920

as
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And the table now becomes

n | Gy an,
Qo 1 1
1 1, 2%
a1 T r242r+2 5 + 5
a 1 _1 _ 3
2 | (r22r+2)(r2+4r+5) 40 ~ 40
3 (r2+42r+2)(r24+4r+5) (r2+6r+10) 520 ' 1560
a 1 1 i
4 | (r242r+2)(r2+4r+5) (r2+6r+10) (r2+8r+17) 2496 12480
as | — 1 9 i
5 (r242r+2) (r2+4r+5)(r2+6r+10) (r2+8r+17) (r2+10r+26) | 603200 361920

Using the above table, then the solution y; () is
yi(z) = 2 (ao + a1z + axx? + asx® + agzt + asz® + agab. .. )
=21+ _1+% T+ _i_ﬁ 2 + i+l 3
B 5 5 40 40 520 = 1560
1 i\ 4 9 i ; .
- — - 0]
+ ( 2496 12480> v <603200 361920) 7 +0( ))

The second solution ys(z) is found by taking the complex conjugate of y;(z) which

gives
| 1 2 1 3% 3 T
ya(z) = ( +( 5 5)””( 4o+40) +(520 1560)””

1 i\ 9 i - )
+ ( 2496 * 12480) v (603200 + 361920> 7 +0( ))

Therefore the homogeneous solution is

Yn(z) = a1 (z) + c2y2(w)
=cirt| 1+ 1 2Z z+ Lo z’+ 5 7 + L z*
! 40 40 520 ' 1560 2496~ 12480
| 1 2 1 3
5 6 —i -~ _ 2
+(603200 361920)z+0(x))+02”” (H( 5 5)“( 40+40)

1 ' 9 i
3 4 5 6
T (520 1560) * ( 2496 12480) * (603200 * 361920) 7+0(z ))
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Hence the final solution is

Y=1Yn
cewt (1 (242 oq (— L 3y (B T Ve (L L Y
7 5 5 40 40 520 ' 1560 2496 12480
9 i . y 1 2 1 3
_ O 6 i 1 -~ _ et 2
+(603200 361920)9” +0(= ))“2”” ( +( 5 5)“( 40+40)“’
3T\ 1 i\ 4 9 i . ;
2 LI o)
+ (520 1560>$ +( 2496 * 12480)3” + (603200+361920)x +0(=)

Summary
The solution(s) found are the following

=cz'( 1+ —l—i-% T+ _Los z? + i'i‘ L z’
y=a 5 5 40 40 520 1560
1 i 4 9 l 5 6
+( 2496 12480)3” * (603200 361920)”” 00 2)
tor (14 (= 2ot (o B) a2 (2 T g
? 5 5 40 ' 40 520 1560

1 i\ 9 i\ . )
+ ( 2496 * 12480) v (603200 + 361920) 7 +0(z >)

Verification of solutions

y=a 5 b 40 40 520 1560 2496 12480

9 i . ] y 1 2 1 3%\
+(603200 361920)”” +0(= ))J’cﬂ (1+( 5 5)“( 40+40>x
3T\ 1 i\ 9 i - )
* (520 1560) v ( 2496 * 12480) v (603200 * 361920) 7 +0(a")

Verified OK.

2.1.1 Maple step by step solution

Let’s solve

2y +zy +(1+2)y=0

° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
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y// _ _y _ (Q+4z)y

T x2

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y// + y + (1+2w)y =0
Check to see if xg = 0 is a regular singular point

Define functions
[Py(z) = 1, Ps(z) = &)

2

z - Py(x) is analytic at z = 0

(¢ Pya))| =1

=0

z? - P3(z) is analytic at z = 0

(z* - Py(z))

=0
x = Ois a regular singular point
Check to see if xg = 0 is a regular singular point
To = 0
Multiply by denominators
2y +zy +(1+2)y=0
Assume series solution for y
- k
y= > az"’
k=0
Rewrite ODE with series expansions

Convert ™ - y to series expansion for m = 0..1
oo
m . Y= E akxk:-l—r—i-m
k=0
Shift index using k— >k — m
[e.e]
™. y = Z ak_mmk—i-'r
k=m

Convert x - 3’ to series expansion

-y = kz ar(k + 1) zF+r
=0

Convert z2 - y” to series expansion
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22y = ap(k+7)(k+7—1)xkT
k=0
Rewrite ODE with series expansions

ao(r? +1)z" + (Z (ar(k* + 2kr + 72 + 1) + ax_1) xk”) =0
k=1

apcannot be 0 by assumption, giving the indicial equation
r+1=0

Values of r that satisfy the indicial equation

re {-II}

Each term in the series must be 0, giving the recursion relation
ap(k* +2kr + 12+ 1)+ ap_1 =0

Shift index using k— >k + 1

art1((k + D242k +1)r+r2+ 1) +a,=0

Recursion relation that defines series solution to ODE

[£3]

Ok+1 = ~ R okrtr242kt2ri2
Recursion relation for r = —I
Ukl = — TRt =210k
Solution for r = —I
o0
Y= kzoakxk_l, Ap+1 = —M]

Recursion relation for r =1
— aj

k+1 = ~RZioTkt142112k

Solution forr =1

B 00
— k+1 _ ag
Y= kZ_jo QL™ Ak4+1 = ~ 12 2Tk+142 I+2k}

Combine solutions and rename parameters
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful

<- special function solution successful”

N\ J

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 69

‘Order:=6; ‘
‘dsolve(x“2*diff(y(x),x$2)+x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0)k

() =cz ™1+ Lo x + —i-f-ﬁ T’ + 3T z’
g\ =a 5 5 40 40 520 1560
1 ; ) 9 i . ]
* ( 2496 12480) v (603200 * 361920) 7 +0(z ))
+ ezt 1+ —l-i-% x+ LI T + i-i-l z*
2 55 40 40 520 ' 1560

1 i\ 9 i . .
+( 2496 12480)3” + (603200 361920)$ +0(z ))
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v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 90

e

kAsymptoticDSolveValue [x~2*y' ' [x]+x*y' [x]+(1+x)*y[x]==0,y[x],{x,0,5}]

~—

1 1 ilea \ 3 N .
Todon T oi0r ’ — o+ + (168 + —(1 -2
y(x) — <12480 + 2496) cox " (iz* — (8 + 16i)z” + (168 + 961)z” — (1056 — 2881)x
. 1 i o N 3 N
— — R - 1 1
+ (480 — 24007)) <2496 + 12480) az’(z* — (16 + 8i)z® + (96 + 168i)z

+ (288 — 10567)x — (2400 — 480i))
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2.2 problem 7.3.4
2.2.1 Maple step by step solution . . . . .. ... ... ... ..... 141

Internal problem ID [5516]
Internal file name [OUTPUT/4764_Sunday_June_05_2022_03_05_15_PM_79439406/index.tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.4.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

x2y”—y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
m2 yll _ y — O

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
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Table 13: Table p(x), g(z) singularites.

p(z) =0

singularity type

singularity | type

=0 “regular”

Combining everything together gives the following summary of singularities for the ode

as
Regular singular points : [0, o0]

Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
:L,2yll _ y — O

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

.’172 <Z (’)’l + 7") (n +r— 1) anxn+r—2> _ (Z anxn—i-r) =0

n=0

Which simplifies to

<Z " a,(n+r)(n+71— 1)> + Z (—anz™") =0

n=0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of = are the same and equal
ton—+r.

<Zx”” n+r(n+r—1>+z (—anz™") =0 (2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)—a,z"" =0
When n = 0 the above becomes
z'aor(—1471) —apgz" =0

Or
(z'r(=1471)—2")ap=0

Since ag # 0 then the above simplifies to
(r2—r—1)xT=0
Since the above is true for all x then the indicial equation becomes
rP—r—1=0

Solving for r gives the roots of the indicial equation as
==+

N = N =
oSS

To =
Since ag # 0 then the indicial equation becomes
(rQ—r—l)mr=0

Solving for r gives the roots of the indicial equation as Since r; — 5 = /5 is not an
integer, then we can construct two linearly independent solutions

(5
n=0

=S
n=0
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o0

1,6

yl(q;) = E an;p""‘z"' 2
n=0
00

Ya(z) = Z bzt~

n=0

ol

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ap is arbitrary and taken as ag = 1. For 0 < n the recursive equation is

a,(n+r)(n+r—1)—a,=0 (3)

Solving for a,, from recursive equation (4) gives

a, =0 (4)

5

Which for the root r = % + becomes

ot

a, =0 (5)

At this point, it is a good idea to keep track of a, in a table both before substituting
r= % + é and after as more terms are found using the above recursive equation.

n | Gpy | Gy

Qo 1 1

For n = 1, using the above recursive equation gives
ay = 0

And the table now becomes

Qo 1
aq 0 0

For n = 2, using the above recursive equation gives

a2=0
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And the table now becomes

(0]

a1

a2

For n = 3, using the above recursive equation gives
as = 0

And the table now becomes

n | Gnr | Gn
ag | 1 1
a; | 0 0
az | 0 0
as | 0 0

For n = 4, using the above recursive equation gives
ag = 0

And the table now becomes

n | Gny | Gn
ap | 1 1
a1 | 0 0
as | 0 0
as | 0 0
as | O 0

For n = 5, using the above recursive equation gives
a5 = 0

And the table now becomes
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n | Gnr | Gn
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0
as | O 0
as | 0 0

Using the above table, then the solution y;(z) is

1, V5
yi(x) = 2272 (ao + a1Z + asx?® + asx® + asx* + asz® + agzb. . )

¥ (1+0())

1
= x§+

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 0 < n the recursive equation
is

bo(n+71)(n+7r—1)—b,=0 (3)

Solving for b, from recursive equation (4) gives

b, =0 (4)

5

Which for the root r =  — 2 becomes

o5

b, =0 (5)

At this point, it is a good idea to keep track of b, in a table both before substituting

r=1_ Y5 and after as more terms are found using the above recursive equation.

2 2

n bn T bn

)

by | 1 1

For n = 1, using the above recursive equation gives
b1 = O

And the table now becomes
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by | 0 0

For n = 2, using the above recursive equation gives

by =0
And the table now becomes
n | by | bn
by | 1 1
by | O 0
by | O 0

For n = 3, using the above recursive equation gives

bs =0
And the table now becomes
n | by, | by
by | 1 1
by | 0 0
by | O 0
bs | 0 0

For n = 4, using the above recursive equation gives
by =0

And the table now becomes

n | by | bn
bo|1 |1
b |0 |0
b |0 |0
b3 |0 |0
by |0 |0
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For n = 5, using the above recursive equation gives

bs =0
And the table now becomes
n bn,'r bn
bo | 1 1
b | 0 0
by | O 0
b3 | 0 0
by | O 0
bs | 0 0

Using the above table, then the solution ys(z) is

yo(z) = it (bo + b1z + baz® + b3z® + buz* + bsz® + bea®. . .)
14 O(a:6))

= Q;%_é (

Therefore the homogeneous solution is

)

= czat? (1+0(=%)) + o2 (1+0(z%)

Hence the final solution is

Y=1Yn

=

5 5

=2t ? (1+0(z%) + Cor2 ™2 (1+0(z%)

=

Summary
The solution(s) found are the following

S

5

y=eat ¥ (140() +ent ¥ (1+06)) )

Verification of solutions

[
S

5

y= clac%Jr 3 (1 + O(xG)) + 02:6%_ 2 (1 + O(x6))

Verified OK.
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2.2.1 Maple step by step solution

Let’s solve
CIJ2y" —y= 0
° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
V' =%
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
"n_ z_y2 =0
° Multiply by denominators of the ODE
wa/l —y= 0
° Make a change of variables
t=1In(z)

O Substitute the change of variables back into the ODE
o Calculate the 1st derivative of y with respect to x , using the chain rule
y = (4y()t'(z)

o Compute derivative

y/ _ %y(t)

o Calculate the 2nd derivative of y with respect to x , using the chain rule
v = (Gy®) ¢ +1'() (2y(®))

o Compute derivative

d2 d
" __ my(t) _ Ey(t)
- x? x2

Substitute the change of variables back into the ODE

a2 d
.’IJ2 ( dtzx?;(t) _ dtxyz(t)> _ y(t) =0

° Simplify
a2y(t) — %y(®) —y(6) =0
° Characteristic polynomial of ODE

r?—r—1=0
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° Use quadratic formula to solve for r

1+(v)
=T 2
° Roots of the characteristic polynomial
=33+ 7)
° 1st solution of the ODE
yi(t) = (i)t
° 2nd solution of the ODE
ya(t) = (%)
° General solution of the ODE
y(t) = cryi(t) + caya(?)
) Substitute in solutions
y(t) = cle(%_é)t + 026(%+§)t
o Change variables back using ¢t = In (z)
y = cle@_é) @ 4 CQeln(z)GJr%)
° Simplify

Y=z <x‘§cl + x§02>

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

‘0rder:=6;
|dsolve(x"2+diff (y(x),x$2)-y(x)=0,y(x) ,type='series',x=0);

y(z) = vz <93_§C1 + $§02> + O0(z%)

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 38

LAsymptoticDSolveValue [x~2xy'"' [x]-y[x]==0,y[x],{x,0,5}]

(19

y(x) = c1z? (1-v5)

1
+ 621172
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2.3 problem 7.3.5
2.3.1 Maple step by step solution . . . . ... ... ... L. 150

Internal problem ID [5517]
Internal file name [OUTPUT/4765_Sunday_June_05_2022_03_05_17_PM_81539624/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.5.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

/

y

y'+ > —ay=0
T

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y/
x
The following is summary of singularities for the above ode. Writing the ode as

y'+= —azy=0

Y + @)y +q(z)y=0

Where
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Table 15: Table p(x), g(z) singularites.

1 q(x) =
p(e) =3 : :
singularity type
singularity type - .
T =00 regular
z=0 “regular”
r=—00 | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 0o, —o0]
Irregular singular points : [0o]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
—yr?+y'z+y =0

Let the solution be represented as Frobenius power series of the form

[es)
Y= E : anxn+r
n=0

Then

(n+7)a,z"t

<
Il

e 20

(n+7r)(n+r—1)a,z""?

<
I

3
Il
o

Substituting the above back into the ode gives

- <Z anan”) T’ + (Z (n+7)(n+r—1) anz”+T‘2> z+ ( (n+r) anxn+r—1> —0
n=0 -0

n=0 n

Which simplifies to

(Z "o, (n+71)(n+1r— 1)) + ( (n+r) ana:"”_l) + Z (—2z**"*7a,) =0

n

145



The next step is to make all powers of x be n + r — 1 in each summation term. Going

n+r—1

over each summation term above with power of x in it which is not already x and

adjusting the power and the corresponding index gives

0o oo
Z (_x2+n+ran) — Z (_an_3xn+r—1)
n =0

n=3

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

<Z "V a,(n+r)(n+r— 1)) + <Z (n+r) anx”‘”_l) + Z_ (—@n_s3z™™ 1) =0

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" o, (n+r)(n+r—1)+m+r) a2 =0
When n = 0 the above becomes
" agr(=1+71) + ragz™ " =0

Or
(7 r(=1+7r)+rz ") ap =0

Since ag # 0 then the above simplifies to

-2 —

Since the above is true for all x then the indicial equation becomes
r?=0

Solving for r gives the roots of the indicial equation as

T =

o = 0
Since ag # 0 then the indicial equation becomes

z 2 =0
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Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

yi(z) = Z an ™" (1A)

Now the second solution ¥, is found using

y2(z) = 31(z) In () + (Z bnw””) (1B)
n=1
Then the general solution will be

y = cy(z) + coy2()

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ao is never zero, and is
arbitrary and is typically taken as ag = 1, and {ci, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y;(z). Eq (2B) derived above is now used to find all a,, coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ag = 1. Substituting n = 1 in Eq. (2B) gives

a1 =0
Substituting n = 2 in Eq. (2B) gives
a; =10
For 3 < n the recursive equation is
an(n+r)(n+r—1)+a,(n+7r)—an—3=0 (3)

Solving for a, from recursive equation (4) gives

an—3
L 4
@ n2 + 2nr + r? (4)

Which for the root r = 0 becomes

Ay
an = n2 ? (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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Qo

a1

a2

For n = 3, using the above recursive equation gives

1
Aa =
° (r+ 3)2
Which for the root r = 0 becomes 1
as = §
And the table now becomes
n A (42
QAo 1 1
ay 0 0
(43)] 0 0
1 1
% | P | 9

For n = 4, using the above recursive equation gives

ay = 0
And the table now becomes

n Qn (42
QAo 1 1
aq 0 0
a9 0 0

1 1
% | TP | 9
ay 0 0

For n = 5, using the above recursive equation gives

a5=0
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And the table now becomes

N
ap | 1 1
a; | 0 0
as | 0 0
as (T+13)2 s
as | 0 0
as | 0 0

Using the above table, then the first solution y;(z) becomes

2 3 4 5 6
y1(x) = ag + a1z + a2x” + azx® + asz” + asx® + agx’. ..

3

:1+%+O(x6)

Now the second solution is found. The second solution is given by

y2(z) = y1(z) In(x) + (Z bnm”"'”)

Where b, is found using

dr
And the above is then evaluated at » = 0. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table

n bn,'r Qnp, bn,r = %an,r bn (7' = 0)
b | 1 1 | N/A since b, starts from 1 | N/A
by | 0 0 [0
by | 0 0 [0
ba | —L | L | 2 _ _2
31 ¢r+3)% | 9 (r+3)° 2
by | O 0
bs | 0 0
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The above table gives all values of b,, needed. Hence the second solution is

y2(z) = y1(z) In () + by + byx + box® + bsx® + byx* + bsx® + bez®. ..

(2 voun) im0

Therefore the homogeneous solution is
Yn(z) = 191 () + c2y2()

= (1+ %3 +O(x6)> +02<(1+ ‘%3 +O(x6)> In () — z—f+0($6))

Hence the final solution is

Y=1Yn
_ 01(1 + %3 + O(x“)) +c2((1 + %3 +0($6)) In (z) - 22—3;3 +0(x6))

Summary
The solution(s) found are the following

3

y=c (1 + %3 —|—O(x6)) +c2((1 + % +0($6)) In(z) - 5 +0(~’U6)> (1)

Verification of solutions

y=c (1 + %3 +O(z‘6)) +c2(<1 + %3 +0(-’E6)) In (z) — 22—36; +0($6)>

Verified OK.

2.3.1 Maple step by step solution

Let’s solve
—yx2 + y//x + y/ =0

° Highest derivative means the order of the ODE is 2
yll

° Isolate 2nd derivative
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7

y'=—L+ay

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
Yy + y;' —zy=0

Check to see if xg = 0 is a regular singular point

Define functions

[Py(z) = 1, P3(z) = —2]

z - Py(x) is analytic at z = 0

(z - Py(z))

=0

z? - P3(z) is analyticat z = 0

(«* - Py(z))

z=0
x = Qis a regular singular point
Check to see if o = 0 is a regular singular point
zo=0
Multiply by denominators
~yr* +y'z+y =0
Assume series solution for y
Y= i T
k=0
Rewrite ODE with series expansions

Convert x2 - y to series expansion
o0
22y =3 a2
k=0
Shift index using k— >k — 2
o0
2. y= Z ak_2xk+1"
k=2

Convert ¥ to series expansion

&)

Y= 3 axlk )zt
=0

Shift index using k— >k + 1
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y'= % aka(k+14r)at
=—1

Convert x - y” to series expansion

z-y' = ap(k+r)(k+r—1)zktr!
k=0

Shift index using k— >k + 1

-y = 3 ap(k+1+7)(k+r)zt"
k=-1

Rewrite ODE with series expansions

aor?z ™ 4 ay (14 7)° 2" + a2+ 1) 2 + (Z (ars1(k+1+ r)? — ak—2) x’“”) =0
k=2

apcannot be 0 by assumption, giving the indicial equation
r2=0

Values of r that satisfy the indicial equation

r=0

The coefficients of each power of x must be 0

[a1(1 +7)* =0,a5(2 +7)* = 0]

Solve for the dependent coefficient(s)

{a; =0,a; =0}

Each term in the series must be 0, giving the recursion relation
g1 (k+1)" —ap_ =0

Shift index using k— >k + 2

ap+3(k + 3)2 —a,=0

Recursion relation that defines series solution to ODE
ak+3 = (ka?';))

Recursion relation for r = 0

— ak
Wt3 = (oy3)2

Solution forr =0

o0
k a
Y= > arr” a3 = k5 a1 =0,a2 =0
= (k+3)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful

<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

‘Order:=6;
‘dsolve(diff(y(x),x$2)+1/x*diff(y(x),x)—x*y(x)=0,y(x),type='series',x=0);

y(z) = (c2In () 4+ ¢1) (1 + %x?’ +0 (x6)> + (—%z?’ +0 (zﬁ)) ca

v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 39

AsymptoticDSolveValuel[y'' [x]+1/xxy"' [x]-x*y[x]==0,y[x],{x,0,5}]

y(@) = (%3 + 1) + cz((%g + 1) log(z) — 22_9673)
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2.4 problem 7.3.6
2.4.1 Maple step by step solution . . . . ... ... ... oL, 162

Internal problem ID [5518]
Internal file name [OUTPUT/4766_Sunday_June_05_2022_03_05_18_PM_92144177/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.6.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

2"z +y —yz® =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
2"z +y —yz® =0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
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Table 17: Table p(x), g(z) singularites.

o= L q(x) = -3
i singularity type
singularity type _ « lar”
z=0 “regular” i S
xr=—00 | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 0o, —o0]
Irregular singular points : [00]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
20"z +y —yz® =0

Let the solution be represented as Frobenius power series of the form

00
y = § an xn+1‘
n=0

Then
Y=Y (n+r)a,a™
n=0
y' = Z (n+r)(n+r—1)a,z""?

3
I
o

Substituting the above back into the ode gives

2 (Z (n+r)(n+r—1) anx"+r_2> T+ (Z (n+r) anx"+’"_1> — (Z anx"”) > =0

n=0 n=0

Which simplifies to

(Z 2z"  ta,(n+71)(n+7— 1)) + ( (n+r) anz"+T_1> + Z (—z*"*a,) =0
n=0 =0

n
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The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"+"~!
adjusting the power and the corresponding index gives

and

o0 o0
Z (_m2+n+ran) — Z (_an_3xn+r—1>
n =0

n=3

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n +r — 1.

(Z 2xn+r—1an(n+1") (n—i—r — 1)) + (Z (n+7") anxn—l—r—l) + Z (_an_3xn+r—1) —0
n=0 n=0 n =3

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" g, (n+r)(n+r—1)+(n+r)a,xz"" =0
When n = 0 the above becomes
2z " agr(—=1+7) + ragz " =0

Or
(227 (=14 1) +rz7") ay =0

Since ag # 0 then the above simplifies to
re T (=142r) =0
Since the above is true for all  then the indicial equation becomes
2r —r =0

Solving for r gives the roots of the indicial equation as

1
7'1:5
7"2=0

Since ag # 0 then the indicial equation becomes

retT(=142r)=0
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Solving for r gives the roots of the indicial equation as Since r, — ry = % is not an

integer, then we can construct two linearly independent solutions

y1(z) = =™ (Z anz">

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ap is arbitrary and taken as ag = 1. Substituting n = 1 in Eq. (2B) gives

a1 =0
Substituting n = 2 in Eq. (2B) gives
a, =0
For 3 < n the recursive equation is
2a,(n+7)(n+1r—-1)+a,(n+7)—an,_3=0 (3)

Solving for a,, from recursive equation (4) gives

an—3
n — 4
. 2n2 +4nr +2r2 —n—r (4)

Which for the root r = % becomes

QAn—3
n — 5
. 2n2 +n (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
1

T'=2

and after as more terms are found using the above recursive equation.
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Qo

a1

a2

For n = 3, using the above recursive equation gives

1
224+ 11r+ 15

as

Which for the root r = % becomes

1
=91
And the table now becomes
n | Gnr an
Qo 1
aq 0
as 0
ga | L [ 1
3 | 2723117415 | 21

For n = 4, using the above recursive equation gives

as = 0
And the table now becomes

n | Qny a,
Qo 1
ax 0
(05} 0
Qs | ——t | L

3 | 2723117415 | 21
ay 0 0

For n = 5, using the above recursive equation gives

a5=0
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And the table now becomes

n | Gnr an
Qo 1
aq 0
as 0
Qa | ——Lt | L
3 | 2r23 11415 | 21
ay 0 0
as 0 0

Using the above table, then the solution y; () is

yi(z) = \/E(ag + a1z + asx® + asx® + agx* + asx® + agzb. .. )

= \/E(1+§+O(x6))

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. Substituting n = 1 in Eq. (2B)

gives
by =0

Substituting n = 2 in Eq. (2B) gives
by =0
For 3 < n the recursive equation is

2b,(n+7r)(n+r—1)+n+7)by —bp_3=0

Solving for b, from recursive equation (4) gives

_ bn—3
M2 4dnr+2r2—n—r

Which for the root r = 0 becomes

n

bn—3

" n(2n—1)

(4)

(5)

At this point, it is a good idea to keep track of b, in a table both before substituting

r = 0 and after as more terms are found using the above recursive equation.
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n | by | bn
|1l |1
b |0 |0
b |0 |0

For n = 3, using the above recursive equation gives

b — 1
ST o2 4 11r+ 15
Which for the root r = 0 becomes 1
b3 == 1—5
And the table now becomes
n bn,r bn
bo | 1 1
b; | 0 0
by | O 0
ba | ——L | L
3 | 2723117415 | 15

For n = 4, using the above recursive equation gives

bs=0
And the table now becomes

n bn,'r bn
bo | 1 1
bi | 0 0
by | O 0
ba | ——L | L

3 | 2r2311r+15 | 15
by | O 0

For n = 5, using the above recursive equation gives

bs =0
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And the table now becomes

n bn,r bn
bo | 1 1
b; | 0 0
by | O 0
b _ 1 | 1
3 | 2r2111r+15 | 15
bs | O 0
bs | O 0

Using the above table, then the solution y,(z) is
Ya2(z) = by + b1z + box® + bsx® + byz* + bsx® + be®. ..
3
z
=14+"= 6
+Et O(z°)

Therefore the homogeneous solution is

Yn(r) = crya(z) + coya(z)

3 3
— VT (1+2=40(%) ) + o1+ = +0(a*)
21 15
Hence the final solution is
Y=1Yn
3 6 3 6
= VT (1+ﬁ+0(1' )) +CQ<1+B+O(Q; ))

Summary
The solution(s) found are the following

3 3
y=czr (1 + % +O(x6)) +co <1 + f—5 +O(w6))

Verification of solutions

3 3
y=c\zT (1 + % —|—O(a:6)> +c <1 + % +O(x6))

Verified OK.
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2.4.1 Maple step by step solution

Let’s solve

20"z +y —yz? =0

° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
v'=-£+%
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

J+ -2 =0
OJ Check to see if xg = 0 is a regular singular point

o Define functions

2z

o x-Py(x)is analyticat x =0

(z - Pa(z))

_1
=0 2

o z?. P3(z)is analytic at z =0

(@ Py(a)| =0

z=0

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

zo=0
° Multiply by denominators
20"z +y —yz* =0
° Assume series solution for y
Y= i T
k=0
0J Rewrite ODE with series expansions

o Convert z? - y to series expansion

o0
2. y= Z akxk+r+2
k=0

o Shift index using k— >k — 2
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k+r

118

Ty =
k

Qp—2%
2

Convert y' to series expansion

o0

Y = kZ ap(k +r) g+l
=0

Shift index using k— >k + 1
v = apr(k+1+7)zht
k=—1

Convert x - y” to series expansion

-y’ = Iiak(k +7)(k+r—1)zFt !

Shift index using k— >k + 1

z-y' = k§1ak+1(k +1+7)(k+7)zhtr

Rewrite ODE with series expansions

aor(=1+2r)z " +a;(1+7)(1+2r) 2" + as(2+7) (3+ 2r) z1+" + <§; (apr1(k+1+7) (2

apcannot be 0 by assumption, giving the indicial equation

r(=1+2r)=0
Values of r that satisfy the indicial equation
re{0,1}

The coefficients of each power of x must be 0

[a1(14+7)(14+2r) =0,a2(2+7) (34 2r) = 0]

Solve for the dependent coefficient(s)

{a1 =0,as =0}

Each term in the series must be 0, giving the recursion relation
2(k+3+7)(k+1+7)ar —ar2=0

Shift index using k— >k + 2

2(k+3+7)(k+3+71)ars —ar =0

Recursion relation that defines series solution to ODE

fr3 = 3k
k+3 = (@k+5+2r)(k+3+7)

Recursion relation forr =0
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— ag
k+3 = (2k+5)(k13)

Solution forr =0

00

— k — ak — —

Yy= Z apT”, Qg43 = (2k+5)(k+3)* a1 = Oa G = O:|
k=0

Recursion relation for r = 1
. ay
Uk+3 = (kr6) (bt L

Solution for r =

3)

1

2

1

yzkzz(Jakkari,aHg W, a :O,a2=0}

Combine solutions and rename parameters

[ 00 00 1 u
Y= (E(}%w’“) + (%bkxksz) y Ak+3 = m:al

Maple trace

:07a2

= 0, bk+3

(2k-|—6)( +2 )

“Methods
--- Tryi

for second order ODEs:
ng classification methods ---

trying a quadrature

checking
checking
trying a
checking
-> Tryin
<- No Li
-> Tryin

-> Be

<- Be
<- speci

if the LODE has constant coefficients
if the LODE is of Euler type
symmetry of the form [xi=0, eta=F(x)]
if the LODE is missing y
g a Liouvillian solution using Kovacics algorithm
ouvillian solutions exists
g a solution in terms of special functions:
ssel
ssel successful
al function solution successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

‘0rder:=6; ‘
‘dsolve(2*x*diff(y(x),x$2)+diff(y(x),x)—x‘2*y(x)=0,y(x),type='series',x=0); ‘

y(z) = vz (1 + %w?’ +0 (mﬁ)) + e (1 + %5953 10 (xe))

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 33

LAsymptoticDSolveValue [2+x*y' ' [x]+y' [x]-x~2%y[x]==0,y[x],{x,0,5}] J

z3 z3
y(z) — clﬁ(ﬁ + 1) +c (1—5 + 1)
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2.5 problem 7.3.7
2.5.1 Maple step by step solution . . . .. ... ... ... ...... 174

Internal problem ID [5519]
Internal file name [QUTPUT/4767_Sunday_June_05_2022_03_05_20_PM_2529632/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.7.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

:v2y"—xy’—y:0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
x2yll _myl _y — O

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
1
p(z) = Tz
1
q(z) = )
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Table 19: Table p(x), g(z) singularites.

p(z) = —; q(z) = -2
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, o0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
x2yll _xyl _y — O

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

z’ (Z (n+r)(n+r—1) anxn+r_2> —z <Z (n+r) anx"+’"_1> — (Z anxn-l-r) —0

(1)

Which simplifies to

(Z " a,(n+71)(n+r— 1)) + Z (=" an(n+71)) + Z (—a,2") =0 (24)

n=0 n =0 n =0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of = are the same and equal
ton—+r.

(Z " a,(n+71)(n+1— 1)) + Z (=2 an(n+71)) + Z (—a,z™™") =0 (2B)
n=0 n =0 n =0
The indicial equation is obtained from n = 0. From Eq (2B) this gives
" Ta,(n+r)(n+r—1)—2""a,(n+71) —a,z"" =0
When n = 0 the above becomes
z"agr(—1+r) — z"agr —apz” =0

Or
('r(=14+7r)—z"r—2")ag=0

Since ag # 0 then the above simplifies to
(7"2—27“—1)35’":0
Since the above is true for all x then the indicial equation becomes
r?—2r—1=0
Solving for r gives the roots of the indicial equation as

r=1++2
ro=1-—+2

Since ag # 0 then the indicial equation becomes
(7"2—27“—1)sz0

Solving for r gives the roots of the indicial equation as Since r; — 73 = 24/2 is not an
integer, then we can construct two linearly independent solutions

y1(z) = ™ (Z anx")
yo(z) = 2™ (Z bnz")
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(e}
i (z) = Z anmn+1+\/§
n=0

y2(.’II) = Z bnwn_’_l_\/ﬁ
n=0

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ap is arbitrary and taken as ay = 1. For 0 < n the recursive equation is

a(n+r)(n+r—1)—a,(n+r)—a,=0 (3)

Solving for a, from recursive equation (4) gives

a, =0 (4)
Which for the root r = 1 4+ /2 becomes

a, =0 (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r =1+ /2 and after as more terms are found using the above recursive equation.

n | Gny | an

Qo 1 1

For n =1, using the above recursive equation gives
a; = 0

And the table now becomes

Qo 1
ai 0 0

For n = 2, using the above recursive equation gives

a2=0
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And the table now becomes

(0]

a1

a2

For n = 3, using the above recursive equation gives
as = 0

And the table now becomes

n | Gnr | Gn
ag | 1 1
a; | 0 0
az | 0 0
as | 0 0

For n = 4, using the above recursive equation gives
ag = 0

And the table now becomes

n | Gny | Gn
ap | 1 1
a1 | 0 0
as | 0 0
as | 0 0
as | O 0

For n = 5, using the above recursive equation gives
a5 = 0

And the table now becomes
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n | Gnr | Gn
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0
as | O 0
as | 0 0

Using the above table, then the solution y;(z) is

= xl""/i (ao + a1z + a2z2 + a3z3 + a4x4 + a5:c5 + a6x6. .. )

= 2*V2 (14 0(29))

Y1 ()

Now the second solution y»(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 0 < n the recursive equation
is

bo(n+r)(n+r—1)—by(n+71)—b,=0 (3)

Solving for b,, from recursive equation (4) gives

b, =0 (4)
Which for the root r = 1 — v/2 becomes

by =0 (5)

At this point, it is a good idea to keep track of b, in a table both before substituting
r =1 — /2 and after as more terms are found using the above recursive equation.

n bn T bn

)

by | 1 1

For n = 1, using the above recursive equation gives
b1 = O

And the table now becomes
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by | 0 0

For n = 2, using the above recursive equation gives

by =0
And the table now becomes
n | by | bn
by | 1 1
by | O 0
by | O 0

For n = 3, using the above recursive equation gives

bs =0
And the table now becomes
n | by, | by
by | 1 1
by | 0 0
by | O 0
bs | 0 0

For n = 4, using the above recursive equation gives
by =0

And the table now becomes

n | by | bn
bo|1 |1
b |0 |0
b |0 |0
b3 |0 |0
by |0 |0
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For n = 5, using the above recursive equation gives
bs =0

And the table now becomes

S

S
3
3

=
S

S

3
| o|lo|Oo|O |
oSl oo |O |~

Using the above table, then the solution y,(x) is

yo(z) = V2 (bo + b1% + bax® + byz® + byz* + bsz® + bea®...)
_ (14 0(e)

Therefore the homogeneous solution is

Yn(z) = c1y1 () + c2y2()
= clxl"'\/i(l +0(z°%)) + cle_ﬁ(l +0(z%))

Hence the final solution is
Y=1Yn
— a2 (14 0(a%)) + etV (14 0(a"))

Summary
The solution(s) found are the following

y= e 21+ 0(a%)) + e (1 +0(a")) )

Verification of solutions

Y= cle‘/i(l + O(x6)) + cle_‘/i(l + O(wﬁ))

Verified OK.
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2.5.1 Maple step by step solution

Let’s solve

2,1

Yy —xy —y=0
° Highest derivative means the order of the ODE is 2

7

Yy

° Isolate 2nd derivative
v=tr

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y// Y % =0

° Multiply by denominators of the ODE
gy —zy —y=0
° Make a change of variables
t=1In(z)
O Substitute the change of variables back into the ODE
o Calculate the 1st derivative of y with respect to x , using the chain rule
y = (4y()t'(z)

o Compute derivative

y/ _ %y(t)

o Calculate the 2nd derivative of y with respect to x , using the chain rule
v = (Gy®) ¢ +1'() (2y(®))

o Compute derivative

d2 d
" __ my(t) _ Ey(t)
- x? x2

Substitute the change of variables back into the ODE

ﬁ t d
2? (—dtjf;“ - dﬁé‘”) — dy(t) —y(t) = 0

° Simplify
2
£ult) = 255(0) —y(®) = 0
° Characteristic polynomial of ODE
r2—2r—1=0
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° Use quadratic formula to solve for r

2(v5)
- 2
° Roots of the characteristic polynomial
r=(1- V2,1+ \/ﬁ)
° 1st solution of the ODE
yi(t) = e<1_\/§)t
° 2nd solution of the ODE
ya(t) = ol+v2)r
° General solution of the ODE
y(t) = ayi(t) + cay(?)
° Substitute in solutions
y(t) = cle(l—\/i)t + cze(1+ﬁ)t
° Change variables back using ¢t = In ()
y = C16(1—\/’2) In(e) | 626(1+\/§) In(z)
° Simplify

Yy = .T(x\/iCQ + x‘ﬁcl>

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 37

‘0rder:=6;
‘dsolve(x“2*diff(y(x),x$2)—x*diff(y(x),x)—y(x)=0,y(x),type='series',x=0);

y(x) = x(z"ﬁcl + x\/ﬁCQ) + O0(z%)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30

LAsymptoticDSolveValue [x™2%y' ' [x]-x*y' [x]-y[x]==0,y[x],{x,0,5}]

y(z) = o'tV + V2
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2.6 problem 7.3.8 (a)
2.6.1 Maple step by step solution . . . . ... ... ..., 189

Internal problem ID [5520]
Internal file name [OUTPUT/4768_Sunday_June_05_2022_03_05_21_PM_17524057/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.8 (a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

(2 +1)y" +zy=0

With the expansion point for the power series method at x = 0.

The ODE is
(:I?4—|-£L‘2) y//+my =0

Or
x(y//x3+y/1x+y) :0

For z # 0 the above simplifies to
(®+z)y"+y=0

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
4 2 "
(m +x ) Yy +zy=0

The following is summary of singularities for the above ode. Writing the ode as

y' +p(z)y +q(@)y=0
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Where

Table 21: Table p(z), ¢(z) singularites.

1(@) = ;@

singularity type
p(z) =0
. . z=0 “regular”
singularity | type
x=—i “regular”
T=1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, —3, 3, 0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
(2 +1)y" +zy=0

Let the solution be represented as Frobenius power series of the form

o)
y — E : anxn+r
n=0

Then

(n+7)a,z"t

<
|

Me 1M

(n+7r)(n+r—1)a,z" 2

<
Il

3
I
o
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Substituting the above back into the ode gives
z*(z? + 1) (Z (n+r)(n+r—1) anxn“_Q) +x (Z anxn+’"> =0 (1)
n=0 n=0

Which simplifies to

(Z "V 2a,(n4+r)(n+1r— 1)) (24)

(Z " a,(n+r)(n+r— 1)) + (i xl"'""'Tan) =0

n=0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already """ and
adjusting the power and the corresponding index gives

Z "t Pa,(n+r)(n+r—1)= Z an2(n+r—2)(n—3+7r)z""
n = n=2
) o0
Z xl+n+’ran — Z an_lxn+r
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + r.

(Z an_o(n+r—2)(n—3+r) x"‘”) (2B)
(Zz”” m+r)(n+r— 1)) + (Zan_lx ) =0

The indicial equation is obtained from n = 0. From Eq (2B) this gives
Ta,(n+r)(n+r—1)=0
When n = 0 the above becomes

z'aer(—14+7r)=0

179



Or
z'ayr(—14+r)=0

Since ag # 0 then the above simplifies to
z'r(—14+7r)=0
Since the above is true for all x then the indicial equation becomes
r(=14+7r)=0
Solving for r gives the roots of the indicial equation as

=

Ty = 0
Since ag # 0 then the indicial equation becomes
z'r(—14+7r)=0

Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

yi(z) = 2" (Zanz>

12(2) = O (2) In (2) + 2" (Z b)

n=0

y(z) =z (Z anz")
y2(2) = Ot (2 (Z bz )

_ Z a,
y2(2) = Ot (2 (Z bz >
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Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting n = 1 in Eq.
(2B) gives

1
= (1+47r)
For 2 < n the recursive equation is
an—o(n+r—2)(n—=3+r)+a,(n+r)(n+r—1)+a,—1 =0 (3)

Solving for a,, from recursive equation (4) gives

N2Gp_g + 207Ap_o + 72— — BNAp_o3 — 5TAp—2 + 6an_2 + Qn_1

n = (n+r)(n+r—1)

(4)

Which for the root r = 1 becomes

—n2a,_9 + 3na,_9 — 2,9 — Gp_1
1+n)n

a, =

()

At this point, it is a good idea to keep track of a, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

no| an, an
Qo 1 1

1 1
ax r(i+r) 2

For n = 2, using the above recursive equation gives

-+’ +1
ag = D)
r(l+nr)°(2+r)
Which for the root r = 1 becomes 1
Ao = E
And the table now becomes
n | Gpy an,
Qo 1 1
1 1
a1 | — a0 —2
a —r44r241 1
2| r@4n)?(2+r) | 12
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For n = 3, using the above recursive equation gives

2t At 4t 2r -1
A+ @2+ B+r)
Which for the root 7 = 1 becomes

as

11
a3 = —
144
And the table now becomes
n | Gn, an
ao 1 1
1 1
a1 | a0 2
a —rt4r241 1
2| r(@4n)2(2+r) 12
a 2rt+4r3+4r242r—1 | 11
3| r+r)?(2+r)2(3+r) | 144

For n = 4, using the above recursive equation gives
o — r® + 8r7 + 2276 4 2075 — 147* — 4073 — 3972 — 30r — 11
e r(1+r)?Q2+7)@+r)2@4+7)
Which for the root » = 1 becomes

83
ay = ————
2880
And the table now becomes
n A r Gn
QAo 1 1
1 1
ay r(14r) 2
—ritriil 1
as =
r(14r)%(2+r) 12
a 2r4+4r34+4r242r—1 11
3 rA+m)2(@2+r)2(3+r) 144
a r848r7+22r6420r5—14r4—40r3-39r2-30r—11 | _ 83
4 r(1+7)2(2+7)2(3+r) (4+r) 2880

For n = 5, using the above recursive equation gives

o — —3r8 — 3677 — 18075 — 4861° — 773r* — 75013 — 40072 — 12r + 83
> r(l+r)2@2+r)2B+r)2@A+r)25B+r)

182



Which for the root r = 1 becomes

2557
s = —————
86400
And the table now becomes
n | Gpyr an
ao 1 1
1 1
a1 r(1+r) 2
a —rf4r241 1
2| r@+r)%(2+r) 12
a 2rt+4r3+4r242r—1 11
31 r(A+m)2@2+r)2(3+r) 144
a r84-8r7422r84-20r° —14r4—40r3 —39r2—30r—11 83
4 r(147)2(2+7)2 (3+7)% (4+r) 2880
a —3r8—36r7 —180r% —486r5 —773r*—750r3—400r2—12r+83 | __ 2557
5 r(147)%(2+7)? (3+7)2 (4+r)%(5+r) 86400

Using the above table, then the solution y, () is

y1(z) = x(ao + a1z + asx?® + asx® + asx* + asx® + agzb. .. )
x 2 112® 83z* 2557z
—zl1-2 4+ _ _ 6
x( 2" 13t Taag " a2ss0  sea00 T O ))

Now the second solution ys(z) is found. Let
M —T9 = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

any = ay
1
T or(i+n)
Therefore
lim __r = lim N
rors r(l4+r) r—0 r(l+7)
= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

Y2(z) = Cyi(z) In (z) + (Z bnx"Jr”)
n=0
Therefore

xn—i—m (n + 7’2) >

n
0

2 o(w) = Cf (@) In () + O (Z

— OYy(e) () + T4 (Zb nm))

n=0

@yz(w) = Cy{(z) In (z) + Qnyi(x) — Cy;Q(ac)

N i (bnwn-i-rz (’I’L + 7.2)2 B bnxn+r2(n + T‘g))

xr2 x2

= Cy{(z)In (w)+20y1( z) _ () (Z 722, (n41rg) (— 1+n+r2)>

T x2
n=0

Substituting these back into the given ode z%(z% + 1) y” + zy = 0 gives

z*(z? + 1) (Cy'l'(x) In (z) + 20‘1;/1 (=) _ Cy;z(x)

nx"“’? (n+ 7“2) bnx”‘”z (n+ 1)
oN| !

+z (C’yl (Z bnx"“z) ) =0

Which can be written as

(((zz +1)2%(@) + pi(2) 2) In (2) + (2 + 1) x2(2y1($) _ y1($)>) c

T x2

n (x2 n 1) 2 (i <bnmn+rza(:7; + 7-2)2 B bnxn—i—r';(Qn + 7‘2))) (7)

n=0

+z <§: bnw"”?) =0
n=0
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But since y;(z) is a solution to the ode, then
(2 +1) 29/ (z) + 1(z) s =0

Eq (7) simplifes to

@+ a2 1) e

72
2 [ bzt (n + 7"2)2 b2 (n + 13) (8)
2 2 n mn
+ (= —|—1)x<nzzo< . - 2
+z (Z bnx”+’"2> =0
n=0

Substituting y; = Y a,2™™ into the above gives
n=0

(23: z” +1) (Zx ", n+r1)> —z? —1) (Zanxn ”)) (9)
+ (z* +2°) (Z T2 2h (n 4 1p) (=1 +n + m)) —l—m(Z bnx”+’”2> =0

n=0 n=0

Since 1 = 1 and 73 = 0 then the above becomes

<2xac +1) (Zx an1+n> —z’ - 1) (Zana: >> 10)
(z* + 22 (ix“ 2ban( n—1>+x<2bnx > =

Which simplifies to

(Z 20 2" 3a,(1+n ) + (Z 2C v "a, (1 + n))
n=0

n=

%0 o0 %0 2A
+ Z "3 Z (—Cw1+"an) + (an"+2bn(n _ 1)> ( )

n = n =0

+ (Z z"b,n(n — 1)) + (i xH"bn) =0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

i20’xn+3 (1+n)= Z2Can 3(n —2)z"
n =0

Z 2C 't "a, (1 4+ n) = i 2Ca,_inz"
n=1
io: ( C’x”+3an) = N (—Cayn_3z™)
n =0 n=3
i (=Cz't"a,) = i (—Can_12")
n =0 n=1
i nz" b, (n —1) = i (n—2)byp_a(n —3)z"
n =0 n=2
i zitmy, = i bp1T
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n.

e .o]

(i 2Ca,_1n x") + Z (—Cay,—_3z™)

n =3

_|_
° 2B
n (Z (n — 2) bp_s(n — 3) 1:") (28)
(Zm"b,mn—l) (an 136):0

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C+1=0
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Which is solved for C. Solving for C' gives
C=-1

For n = 2, Eq (2B) gives
30(11 + bl + 2b2 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

3
2b2+§=0

Solving the above for by gives

3
bQZ_Z

For n = 3, Eq (2B) gives
(a0+5a2)C’+b2+6b3 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

13
—— +6b5=0
g T
Solving the above for bs gives 13
by = —
> 36

For n = 4, Eq (2B) gives
(3(11 + 7a3) C + 2b2 + b3 + 12b4 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

25
a4 + 126, =0
Solving the above for b, gives .
b= 1728

For n =5, Eq (2B) gives
(5&2 + 9(14) C + 6b3 + b4 + 20b5 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives
8743 +20b5 =0
4320 o
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Solving the above for b gives
8743

86400
Now that we found all b,, and C, we can calculate the second solution from

y2(z) = Cy1(z) In (z (Zb x””z)

Using the above value found for C' = —1 and all b,,, then the second solution becomes

) = (1) (2(1- 2+ 2 BB I o)) ) mee

5

2 12 144 2880 86400

1 3z? N 1323 N 25z 87432° +0(a)
4 36 1728 86400

Therefore the homogeneous solution is

Yn(t) = cry1 () + coya(z)

L _% z? N 11z  83z*  2557z° +0(a")
=cz|(l—<-+— — —
! 2 12 ' 144 2880 86400

2 11z2®  83z* 2557z
+Cz<( )( ( >+t 12 121~ ass0 ~ sedoo T O ))) n(z) +
3r2 13z 25z*  8743x5
2 T35 728~ seaoo TOU >)

Hence the final solution is

s 1_§+x_2+ 112° 83z  2557a° +0()
- 2 712" 144 2880 86400

tol—a 1_{_'_37_2_'_115”3_83334_2557x5+0<x6> ln()+1—3i-|-13x3
2 2 12 ' 144 2880 86400 4 36

25z*  8743z° 6
1728~ sedo0 T O ))
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Summary
The solution(s) found are the following

- 1_£+:c_2+ 11z*  83z*  25572° +0(af)
y=a 2 7127 144 " 2880 ~ 86400

2 11 3 4 2 5
+62< <1__+x_+ v 83w 2007 +O(x6)>ln(x) 1—3%()

27127 144 T 2880 86400
1323  25z% 8743¢° ]
* 36 * 1728~ sea00 T O )>

Verification of solutions

. 1__+””_+11 23 83x4_2557x5+0(x6)
v=a 27127 140 2880 86400
113:3 83z*  2557x° 32
_ _ 1 1- 22
+CQ< m( * 141 230  sea00 T O )) n(@)+1-
1323  25x*  87432°
_ O (b
* 36 * 1728 sea00 T O ))

Verified OK.

2.6.1 Maple step by step solution

Let’s solve
(2 + 1)y +zy=0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
V="
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y” + x(xg+1) =0
! Check to see if xg is a regular singular point

o Define functions

|Pa(z) = 0, Py(2) = 5]

o x-Py(x)is analyticatx =0

(z - Py(x))

z=0
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z? - P3(x)is analytic at x = 0

(«*- Py(z))| =0

z=0
x = Ois a regular singular point

Check to see if xg is a regular singular point
g =0

Multiply by denominators
v'z(z?+1)+y=0

Assume series solution for y

o0
Y= Z akzk-l—r
k=0
Rewrite ODE with series expansions

Convert ™ - 3" to series expansion for m = 1..3
o0

™. y// — Z ak(k 4 7") (k +r— 1) rhtr—2+m
k=0

Shift index using k— >k +2—m

™y = > apppmk+2—m+r)(k+1—m+r)zttT
k=—2+m

Rewrite ODE with series expansions

aor(=1+7r) 27" + (ay(1 +7) 7+ ag) " + (Ié (agr1(k+14+7)(E+7)+ar + ap—1(k+7r—1
apcannot be 0 by assumption, giving the indicial equation
r(—14+7)=0

Values of r that satisfy the indicial equation

r € {0,1}

Each term must be 0

a1(l14+7r)r4+a =0

Each term in the series must be 0, giving the recursion relation
sk +1+r)(k+7r)+ar+ap1(k+r—1)(k—24+7)=0
Shift index using k— >k + 1
ap2(k+2+7r)(k+1+7r)+ap+a(k+r)(k+r—1)=0
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Recursion relation that defines series solution to ODE

a _ _kzak+2krak+7‘2ak—kak—Tak—i—ak_H
k+2 = (k-+2+7) (k+1+)

Recursion relation forr =0

a _ _kzak—kak+ak+1
k+2 = (k+2)(k+1)

Solution forr =0

Y= oz’ appo = T T2k @

k2ak—kak+ak+1
y 40 = 0
k=0

Recursion relation forr =1

a _ _kzak+kak+ak+1
k+2 = (k+3)(k+2)

Solution forr =1

o)
_ k+1 _ _ KPaptkartarsa _
Yy= kz_oakx y Ak42 = (k+3)(k+2) a2a1 +ap = 0

Combine solutions and rename parameters

[ = & k2a),—k k2bj,+kby+b
y = (Iczzoakx’c) + <k2_0bkz’f+1) Qa2 = — " (prayerty G0 = 0, by = — Rl by 4+ b
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Maple trace

s N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moeb
trying a solution in terms of MeijerG functionms
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x)
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
-> trying a symmetry pattern of the form [F(x)*G(y), O]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
--- Trying Lie symmetry methods, 2nd order ---

, ~—> Computing symmetries using: way = 3~ [0, y]
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 58

‘0rder:=6;
‘dsolve(x“2*(1+x“2)*diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);

1 1 11 83 2557
y(w)zclx(l——x+—x2—l—— 3 4 5—|—O(x6))

27 T 127 T 144" T 28307 T 86400”
83

11
O B . S et S i 6
+C2(ln(x)( m—|—2x 5%~ 1 +2880x +0(z )>

1 2 43
+<1—Z$2+—33+ O gt B 5—{—0(906)))

367 T 17287 T 86400"

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 87

LAsymptoticDSolveValue [x~2% (1+x72)*y ' ' [x]+xxy [x]==0,y[x],{x,0,5}]

@) 1572* + 76823 — 216022 + 1728% + 1728
y\r) —a 1728
8325 1lz¢ 28 22

1 3 9 z° oz
- — 79 +144) 1 — e R
1 x(llx +12z° - 72z + ) og(x)) +cz( 2880+ 1 + 23 +a:)
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2.7 problem 7.3.8 (b)

Internal problem ID [5521]
Internal file name [OUTPUT/4769_Sunday_June_05_2022_03_05_23_PM_14949691/index.tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.8 (b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Irregular singular point"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

x2y”+y’—+—y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
:L,lel_'_yl_l_y:o

The following is summary of singularities for the above ode. Writing the ode as

Y +p@)y +q(z)y =0

Where
1
p(z) = 22
1
q(z) = 22
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Table 23: Table p(x), g(z) singularites.

p(z) = 5 q(z) = &
singularity type singularity type
z=0 “irregular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [00]
Irregular singular points : [0]

Since z = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since z = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful”

195




X Solution by Maple

‘0rder:=6;
‘dsolve(x‘2*diff(y(x),x$2)+diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

No solution found

v/ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 84

LAsymptoticDSolveValue [x~2%y' ' [x]+y' [x]+y[x]==0,y[x],{x,0,5}]

@) = et 592412° | 1911a*  9la® | 21a?
X Co€Ez
4 2 40 8 2 2

+c —91z5+E—x—3+m—2—x+1
"\ 40 8§ 2 ' 9
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2.8 problem 7.3.8 (c)

Internal problem ID [5522]
Internal file name [QUTPUT/4770_Sunday_June_05_2022_03_05_24_PM_67992485/index. tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.8 (c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y”w+y'w3+y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
y//$+y/$3+y =0

The following is summary of singularities for the above ode. Writing the ode as

Y +p(@)y +q(z)y =0

Where
p(z) = 2?
1
q(z) = o
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Table 24: Table p(z), ¢(z) singularites.

p(z) = z?
singularity type

q(z) = ;

singularity type

T =00 “regular”

z=0 “regular”

r=—00 | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0o, —00, 0]
Irregular singular points : [0o]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
y//w+y/x3 +y =0

Let the solution be represented as Frobenius power series of the form

00
y = § an xn+1‘
n=0

Then

(n+7)a,z"t

(n+7r)(n+r—1)a,z""?

<
|

e 10

3
I
o

Substituting the above back into the ode gives

<Z (n+r)(n+r—1) an$n+r_2> x+ <Z (n+r) anx"+’"_1> 3+ (Z anx””) =0

n=0 n=0

Which simplifies to

<Z xn+r—1an(n+r) (n+r— 1)) + (Z w2+n+ran(n+’r)) + <Z anxn+r) =0 (2A)

n=0
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The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"+"~!
adjusting the power and the corresponding index gives

and

o

o0
> @ ay(n+r) =) ansn+r—3)z"
n=3

n =0

oo o0
2 :anxn—i—'r — 2 :an_lxn—i—r—l

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

<RZ:0 2 e, (n+1)(n+r— 1)> (2B)

+ (Z an—3(n+r—23) x"”_l) + (Z an_lz”+T_1> =0
n=3 n=1

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" la,(n+r)(n+r—1)=0
When n = 0 the above becomes
T agr(=1417) =0

Or
T agr(=1417) =0

Since ag # 0 then the above simplifies to
T r(=1+7)=0
Since the above is true for all x then the indicial equation becomes
r(=1+7)=0
Solving for r gives the roots of the indicial equation as

r =

’l"2=0
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Since ag # 0 then the indicial equation becomes
T r(=14+7)=0

Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

N n=0
y(z) == (ni an:c")
y2(z) = Cy1(z) In (z) + (g bna:">
N -
yi(z) = nf; apz"tt

y2(2) = Ot (= (Z bz )

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting » = 1 in Eq.

(2B) gives
1

“ =T
Substituting n = 2 in Eq. (2B) gives

1
r(1+7r)?@2+7)

a9 =
For 3 < n the recursive equation is

an(n+r)(n+r—1)+a,—s(n+7r—3)+a,-1 =0 (3)
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Solving for a,, from recursive equation (4) gives

NAp_3 + rap_3 — 3ap_3 + Gp_1

In = (m+r)(n+r—1) )

Which for the root r = 1 becomes

—NAp_3 + 20,3 — Ap_1
5
(n+1)n (5)

Ay =

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n | Gpy an
Qg 1 1

a | ~iitm | 73
% | i | 12

For n = 3, using the above recursive equation gives

—r® —4rt — 53 —2r2 — 1
r(l+7)°2+7)°3+7)
Which for the root r = 1 becomes

as =

4 — 13
5T 144
And the table now becomes
n | Gn, an
Qo 1 1
1 1
@ | Traen T2
1 1
@2 | a2 ) 12
a —rd—4rt—5r3—272—1 | _ 13
31 r+r)?(2+r)?(3+7) 144

For n = 4, using the above recursive equation gives

_2r® 4+ 13r* + 361 + 53r% + 40r + 13
7'(1+7')2(2+7')2 (3+r)2(4+r)
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Which for the root r = 1 becomes

157
ay = ——
2880
And the table now becomes
n | Gny an
ap 1 1
1 1
a1 r(1+4r) 2
1 1
@2 | TanZetr) 12
a —r5—4r4_5r3_2r2_1 13
31 @+’ @+n)2(3+r) 144
a 2r5413r44+36r3+53r24-40r+13 | 157
4 T2 (240) 2 (3+r)2 (4+r) 2880

For n = 5, using the above recursive equation gives
a5 = —3r% — 27r* — 11373 — 261r% — 316r — 157
r(14+r)Q2+7r) B+ @+r)>G+r)
Which for the root r = 1 becomes

877
a5 = —————
86400
And the table now becomes
no| G an
Qo 1 1
1 1
a1 r(1+4r) 2
1 1
2 | T2t 12
@a | Zri=trt—brd—2r2-1 _ 13
31 r(1+r)22+r)2(3+r) 144
an | 2r°13ri436r®+53r2+40r+13 157
41 T r(4n)2(240)2 (347) 2 (4+T) 2880
a —3r5—27r4—113r3-26172—316r—157 | __ 877
5| T r(+n)?(24)2(341) 2 (4+r) 2 (5+7) 86400

Using the above table, then the solution y; () is
yi(z) = x(ao + a1z + asx? + asz® + asx* + asz® + agzb. .. )
x  x? 132° 157z  877aP
= 1—— PR _ 6
m( 212~ 144 " 2880 " s6a00 T O >)

202



Now the second solution ys(z) is found. Let
T —T9 = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = a;
1
T r(l+n)
Therefore
lim __ = lim 1
rors r(l4+7r) =0 r(l+7)
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

n=0

y2(2) = Cya(w) In () + (Z bnm’”ﬁ)

Therefore

2 (@) = Cf () In ) + 2D (Z “m("*”’)

= Cy)(z)In (z) + Cy1 (Z LTI (4 m))

n=0

x2 2

x
+ i (bnxnm (n+r2)”  baz™(n + m))

n=0

= Cyi(z) 1n(x)+20y1( z) Cyl( ) (Zw 24n472h (n413) (—1+n+7‘2)>

T x2
n=0
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Substituting these back into the given ode 3"z + y'z3 + y = 0 gives

< (bt ) (o )
+ Z ( 72 - 72 z

n=0

+ <C'yi (x) In ($) + —C'y;(x) + (i bnanrrngn + T2)>> z3

n=0

+ Cyi(z)In (z) + (Z "+”>

=0

Which can be written as

(0@ + 1@+ n@) (@) + (A2 20 ) o1y 0)02) 0
i (i bnwn+r2$(.n + Tg)) 1,'3

n=0

0 bn.’L'n+T2 (TL + 702)2 bnxn+r2 (n + 7-2) ° b
+<Z( a? - 22 oo (2 b | =0
n=0

n=0

But since y;(z) is a solution to the ode, then

yi(z) 2® + o (z) x + y1(z) =0

Eq (7) simplifes to

((2?;1( 7)) i ))x+y1( ) 2)0+ (i bnxn+rz(n+7'2)>x3

n=0

0 bn.’L'n+T2 (n + 7"2)2 bnxn+r2 (n + 7-2) ° b
+<Z( a? - 2 o | 2 ba™ | =0
n=0

n=0
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Substituting y; = Z a,z"*" into the above gives
n=0

(2(§ s g, (n + r1)> 2+ (a8 — 1) (i ana:”+’"1)> c

n=0 n=0

- ©)

(E $—1+n+r2bn(n+,’n2)> IL‘4 + (Z x—2+n+r2bn(n _|_,r.2) (_1 +n+ ,r.2)> 1172 + (Z bnxn+r2) T
n=0 n=0 n=0

_|_

x
=0

Since 7y = 1 and r, = 0 then the above becomes

(2 ( 20 Tan(n + 1)) o4 (@ — 1) ( 20 anx”+1)> c

T

( OOE x"‘lbnn) z* + ( OOE 72 b, n(n — 1)) z? + ( o; bnx") z
n=0 n=0 n=0
0

+ =

(10)

Which simplifies to

<Z 2Cz"an(n+1) > (Z Cx"+3an> + HZ: (—Ca,z™) (2A)

n=0

+ (inx%"bn) + <an”_1bn(n — 1)) + <i bnx”> =0

The next step is to make all powers of £ be n — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"~! and
adjusting the power and the corresponding index gives

Z2Cx an(n+1) = Z2Can_1nz

n =0

i Cz"3a, = i Cay,_gz™ 1

n =0 n=4
i": (—Canz™) = i (—Cap_12™)
n =0 n=1
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f: nz?t"h, = f: (n —3) by_sz™!
n=3

i b,z = i b, 12" !

n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n — 1.

+ (i (n—3) bn—3$"_1> (Z nz" b, (n—1) >+ <Z bn_lx”_1> —0

n=3

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C+1=0

Which is solved for C. Solving for C' gives
C=-

For n = 2, Eq (2B) gives
30&1 + bl + 2b2 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

3

Solving the above for by gives

3
bQZ—Z

For n = 3, Eq (2B) gives
50&2 + b2 + 6b3 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives ;
6b3 - 6 = 0
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Solving the above for b3 gives

7
b3—%

For n = 4, Eq (2B) gives
(a0+7a3)C+b1—|—b3+12b4 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

25
~Tid + 126, =0
Solving the above for b, gives
by — 25
171728

For n =5, Eq (2B) gives
(a1 + 90,4) C + 2b2 + b4 + 20b5 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

6377
~ 1320 +20b5 =0

Solving the above for b; gives
6377

86400
Now that we found all b, and C, we can calculate the second solution from

y2(z) = Cyi(z) In (z (Z bnx"”z)

Using the above value found for C = —1 and all b,,, then the second solution becomes

z?  13z% 157z 877xS 6
va(z) = (=1) ( (1 ~ 3% 13~ 141 " 2880 ~ s6a00 ~ O >)) In(z)
3z2 Tz3  25z* 6377z
1— 22 el 6
1= T 36 T 178 * seaoo T O@)

5=

Therefore the homogeneous solution is
yr(z) = c1y1(z) + c2y2()

o1 T 1 BTt ST
—aT LT 0T 144 T 2880 86400 | O &
2 13z 157z*  877x°
+C2<( )( ( >+ 15~ 124+ 2ss0 ~ sea00 T O ))) n(z) +
— 3_z2 + 7_:(:3 + 252 n 63772° N O(mﬁ)
4 T 36 T 1728 T 86400

207



Hence the final solution is

Cep(1_% T 132% 15728 8772 0(s")
e 2712 144 " 2880 86400
z x2 132> 1572* 877x° 32 743
—e(l-5+ - - ) )1 1-= 4=
+CQ( x( 2T 127 141 T 2880 86400+0(w )) n (z) + 3

4 5
| 2t 6377 (xﬁ))

1728 = 86400

Summary

The solution(s) found are the following

( x x2 1323 157x* 87725
y=cz|(l— -+ ——

el _ 6
2712 1aa T 2850  seao0 T O )>
r z? 132% 157z* 877L° 6 3z?
(1T _ _ 32
+02< m(l 512~ 1a¢ T 2880 86400+O(x)>1n(m)+1 1 (

708 25zt 6377
+ o x+0(m6))

36 1728 + 86400
Verification of solutions

e 1_§+x_2_ 13x3+157x4_877x5 0(')
v=a 2 712 144 ' 2880 86400
r 1z 13z* 157z* 87720 6 3z? T8
+C2(_‘”(I_ 2t 12 144 T 2880 " sea00 T O )> @) +1=-"+ 55

25z*  6377x° 6
+ 7728 + sea00 T O ))

Verified OK.
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Maple trace

s N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
=-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functionms
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power| @ Moebius
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
=> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear OB with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type

~ & s . =+ . e g W o w~ e g e



v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 58

‘0rder:=6;
‘dsolve(x*diff(y(x),x$2)+x“3*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

1 1 1 157 877
y(w)zclx(l——x+—x2— 3 8 4

_ 5 6
2*+ 2%~ 1a® tass0” seaoo” T O ))
13 , 157

1 2 1 3 5 6
+C2(1n(x)( 73T % Y1 st O

3, T 4 2 , 6377 , 6
+(1 1° *36% T ms® *seano® TO @)

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 87

LAsymptoticDSolveValue [xky ' ' [x]+x73*y ' [x]+y [x]==0,y[x],{x,0,5}]

y(z) = ¢ (1%490(13:53 — 122° + 72z — 144) log(x)

N —131z* + 4802% — 2160z2 + 17282 + 1728
1728
(157z5 13z* 23 22 )
C2

9820 144 T12 2%
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2.9 problem 7.3.8 (d)

Internal problem ID [5523]
Internal file name [OUTPUT/4771_Sunday_June_05_2022_03_05_27_PM_18805796/index.tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.8 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y'z+zy —e"y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
vV'e+zy —e"y=0

The following is summary of singularities for the above ode. Writing the ode as

Y +p(x)y +q(x)y =0

Where
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Table 25: Table p(x), g(z) singularites.

g(z) = -
p(z) =1 singularity type
singularity | type z=0 “regular”
T = 00 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, o]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
y"z + xy’ _ ea:y =0

Let the solution be represented as Frobenius power series of the form

o)
y = § an xn+7‘
n=0

Then

(n+7)a,z"t

M 10

(n+7r)(n+r—1)a,z""?

<
|

3
Il
<)

Substituting the above back into the ode gives

<Z (TL+7") (n—i—’r — l) anxn+r—2) T4z (Z (’I’L-l-T') anxn+r—1) — <Z anxn—f-r) =0

1)

Expanding —e” as Taylor series around « = 0 and keeping only the first 6 terms gives

1., 1 1 1 1
P B . S I S 5_ 6,
© TP T T T120” Tt Tt
:—1—x—1x2—1x3—i4——1 5_ 146

27 T6Y T 24" T 120" T 720"
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Which simplifies to

(Z vt n—i—r) (’I’L-l—?"—l)) + (Z wn+ran(n+,’, > Z anmn+r

n =0

+Z(_x1+n+r i( ™t 2q ) +§: (_ %> (2A)

n =0

g e 5, e n+r+6
£ () S )

=0 n =0

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

Z " a,(n+1) = Z an_1(n+7r—1)2z"" 1

n =0 n=1
Z_O (_anzn-l—r) — Zl (_an_lmn—i—r 1)
i ( xl-i—n—i—ran) — i (_an_an—i—r 1)
n =0 n=2
o) n+r+2 S n+r—1
> () a )
oo n+r+3 e gt 1
() - n (=)
e g S an_5wn+r—1
nz;o <_ 24 > - ; <_ 24 )
o0 5 s Ap_ez™t" 1
,;) <_ 120 > - ; <_ 120 >
o 6, _ o an_7zn+r 1
;::O (‘ 720 ) - n; <_ 720 >

213



Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n +r — 1.

(an+r la,(n+r)(n+r—1) ) + (ian_l(n+r— 1)xn+r—1>

n=1
o0

nrl nrl an3xn+r1
+Z (—ap_1z™* +Z —a,_ox™t +Z( ) (2B)

n=

_'_Z( U 4mn+'r 1) +i (_an_5;;1+r 1)

n =5
Uy 6xn+r 1 0 an_7xn+r—1 _
+Z< 120 >+;(_ 720 =0
The indicial equation is obtained from n = 0. From Eq (2B) this gives
"t la,(n+r)(n+r—1)=0
When n = 0 the above becomes
T agr(=147) =0

Or
T agr(=147) =0

Since ag # 0 then the above simplifies to
T r(=1+7)=0
Since the above is true for all x then the indicial equation becomes
r(=1+7)=0
Solving for r gives the roots of the indicial equation as

r =

To = 0
Since ag # 0 then the indicial equation becomes

N r(=14+7)=0
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Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

yi(z) = 2" (Zanz>

12(2) = Cya (o) In (z) + 27 (Z W)

n=0

y(z) =2z (Z anx")
y2(2) = O (2 (Z bz >

= Z anztt
ya(z) = Cy1(z (Z b,x" >

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting n = 1 in Eq.
(2B) gives

0 — 1—-r
P+
Substituting n = 2 in Eq. (2B) gives
2r
Qg = 3
(1+7)2+Tr)
Substituting n = 3 in Eq. (2B) gives
r—2)
e (1=2)

Substituting n = 4 in Eq. (2B) gives

rt—r34+22r 4+ 3r + 3
6(1+7)°r(3+r)°@+r)

aqg =
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Substituting n = 5 in Eq. (2B) gives

. rS 4+ 2r% + 417* + 3273 4+ 3272 4+ 1287 + 112
24(2—i—7")27'(4—|-7")2(1+7")2 (547)

as

Substituting n = 6 in Eq. (2B) gives

_ r8 + 7r7 4+ 11375 + 5547° + 1943r* + 480773 + 593172 + 32407 + 1740

e 120 3+7)2r(5+r) 21+ 22+ 6+7)

For 7 < n the recursive equation is

an(n+r)(n+r—1)+a,1(n+r—1) —a, (3)
. _Opn3 Qn4g Ops5 Gn6 Qdn7 -0
In-27" "9 6 24 120 720

Solving for a,, from recursive equation (4) gives

_720nan_1 + 720ra,—1 — @p—7 — 6a,_¢ — 30a,,_5 — 120a,,_4 — 360a,,_3 — 720a,,_o — 1440a,,_1
720(n+7r)(n+r—1)
(4)

ap =

Which for the root r = 1 becomes

. — —720na,—1 + an_7 + 6a,_¢ + 30a,_s + 120a,,_4 + 360a,,_3 + 720a,,_2 + 720a,,_1
" 720(1+n)n

(5)
At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n | Gpyr (07%
ao 1 1
1—r
a1 r(14r) 0
2r 1
a e — =
2 | @+n2@+r) 6
(r—2)2 1
A3 | 5o %A =
2r(24r)*(3+r) 72
a r—r3+22r24 3r+3 e
4| 6(1+r)%r(3+r)2(4+r) 480
a r84+2r54+41r4432r34+32r24128r+112 29
5 24(2+7)2r(4+7)2 (1+7)2 (5+7) 10800
a r84+7r74113r8 455415 +1943r4 +4807r3 +593172 43240141740 191
6 120(34r)%r(5+7)2 (14+r)2 (24+7) % (6+r) 181440
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Using the above table, then the solution y; () is

y1(z) = z(ag + a1% + a2z” + a3z’ + asz + azz° + agz®. . )

(14 z? N 3 N Tzt N 29z° N 19125 +0(a%)
o 6 72 480 10800 = 181440

Now the second solution ys(z) is found. Let
M —T9 = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim,_,,, a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = a;
1=
S r(147)
Therefore
lim i — imi
rorer(147r) r—or(l+7)

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(z) = Cyi(z) In (z) + (Z bnwn-H"z)

n=0
Therefore
d Ry Cy1(z) = bpz™ 2 (n 4 1)
@) = O @) + 4 4 (S
/ Cy z - — n—+ro
= Cyi(z)In(x) + ;( )—l— (;z Int bn(n—l-m))

x2 2

T
N i (bnx"”z (n+ 7"2)2 B bzt (n + 7'2))

T x2

=Cy{(z)In(z)+ 20m(x) — Cy(z) + (i xRy () (=1 +n+ 7‘2))

n=0
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Substituting these back into the given ode y"x + zy' — ey = 0 gives

2. [ b,z (n+ r2)2 b,z 12 (n + 13)
+ Z ( 72 - ) z

n=0

+a (Cyi(x) In () + S0 (f; bt (0 72) ))

n=0

(C’yl (z)In (z (Z bnx”Jr”)) =0

Which can be written as

(cen@ + @) +sl@ o + (22 - 1001y 0
+

— e (i bnxn+r2) +z <i bn.’L‘n-l-Tz (n

n=0 n=0

x
2. [ bzt (n+ 7”2)2 bzt (n + 13)
+ (Z < 72 - 72 z=0

n=0

But since y;(z) is a solution to the ode, then

—e"yi(z) +yi(z) z +yi () =

Eq (7) simplifes to

((2y’1(a:) yi(z ))x+y( ))C’

e <i bnz.n-l—m) (i bnxn+r21(:n + T2)>

( (b nE" T2 (n + 7"2 bp ™2 (n + 13)
72

)mzo
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Substituting y; = Z a,z"*" into the above gives
n=0

(2(§ s (n 4 m) s+ (z—1) (i an:c"+’"1)> C

n=0 n=0

9)

T

n=0 n=0

—e? ( 3 bnx”+T2> T+ (Z p~IHnEr2h (n + 7"2)) z? + (Z 72t 2h, (n+1o) (—1 + 1+ 7o)
n=0

)

+
=0

X

Since r; = 1 and r, = 0 then the above becomes

(2 ( 20 an(1 + n)) 24 (z—1) ( 20 aan”)) c

x (10)
—e’ ( io bnwn) T+ (io x"‘lbnn) z? + (io " 2b,n(n — 1)) z?

+

T

Expanding —e” as Taylor series around « = 0 and keeping only the first 6 terms gives

—ez——l—w—lw —lx?’—lx“—ix —Lx +.
o 2 6 24 120 720
1 1 1 1 1
e g2 _ T3 A T 5~ 6
Y797 76" Toa® T 120" T 0"

Which simplifies to

(i 2C z"an(1 + n)) + ( e

)3
+ni;0(—bnmn)+ 3" (—z'7b,) i; ( n+2b ) (2A)
SE SRR
) s (o)

The next step is to make all powers of £ be n — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"~! and
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adjusting the power and the corresponding index gives

Z2Cx an,(1+n)= ZQC’an_lnz

Z
SR
S ) S (o
io (=bpz™) = 2 (—bn_lw”_l)
3 (=17,) = 3 (<boaa™)
;’::0 _xn+22bn _ g _bn_gzzn !
ni; _x”:’bn _ g _bn_4g" 1

2 ) i:j b
ni;o L) - 2 b
5 =30

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n — 1.

(—b )+
()

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C—-1=0

Which is solved for C'. Solving for C' gives
c=1

For n = 2, Eq (2B) gives
(a0+3a1)C—b0+2b2 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives
2b, =0

Solving the above for by gives
For n = 3, Eq (2B) gives

b
(a1+5a2)0—50—b1+b2+6b320

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives )
—+6b3=0
3 o
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Solving the above for b3 gives
by =——
718
For n = 4, Eq (2B) gives

(a2+70,3)0—b—o—b——b2+2b3+12b4—0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

1
D) +12b4, =0
Solving the above for by gives .
"= 864
For n =5, Eq (2B) gives
bp b1 by
(a3+9a4)0—ﬂ—g———b3+3b4+20b5—0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

13
— +20b5 =0
g0 %
Solving the above for b; gives
b — 13
® 71600

Now that we found all b,, and C, we can calculate the second solution from

y2(z) = Cys(x) In (z (Z bnz"Jm)

n=0

Using the above value found for C' =1 and all b,,, then the second solution becomes

z2  x®  Txt 2920 191z
—1fe(1+Z 4 L 6)) )1
va() ( ( + % 72" 130 " 10800 T 181400 T O ))) n ()
z2 ozt 132°
1-T 42 0T L)
+1- 15" 862 1600 T O

Therefore the homogeneous solution is

yn(z) = c1y1(z) + cay2(x)
( x? oz 7zt 29x° 19125
= C1T

1 dl il 6
+ % 72t 130 T 10800 T 181420 T O >)

2 3 Tz* 292° 191aS 73
L 1+ +5+ 50 1 -
+02( ( ( + %+ 72 185 " 10800 * 1514z * O ))) n(z)+1- ¢

zt 1328 6
* 862 1600 T O >)
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Hence the final solution is
Y=1Yn

cop(14 LT T B 0 o)
—a 6 72 7 480 T 10800 ' 181440 T

Yoz 1+x—2+x—3+E+2gx5+191x6+0( 6) ) In (z) + 1 ©, 2
2 6 " 72 480 " 10800 ' 181440 ' = \* o 18 " 864
13z°

~Teo0 T O(xﬁ))

Summary
The solution(s) found are the following

cae(14 T T T B LB o)
y=a 6 " 72 " 480 " 10800 ' 181440 v

2 z3 7zt 2925 191z o
T 6 2
e (x( + % et 130 T 10800 T 1s14d0 T O >> In () +1- 7o

zt  132° 6
861 1600 T O ))

Verification of solutions

14— 4+ 6
+% * 72t 180 T 10800 * 18140 T O ))

2 3 74 295 1916 3 4
-I-cz(x(l—i—x—-f-x——l-i—l- T 7 +O(x6)>ln(z)+1—x—+x—

( 2 3 Tzt 29%° 19125
Y=z

6 72 480 10800 = 181440

Verified OK.
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

@ Moebius
, dx)) * 2F1([a

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients

<- unable to find a useful change of variables

trying a symmetry of the form [xi=0, eta=F(x)]

trying differential order: 2; exact nonlinear

trying symmetries linear in x and y(x)

trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

x), dx)) * 2F1

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a

(x), dx)) * 2F1

power @ Moebiu

-> trying a solution of the form rO(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *

trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form [F(x)*G(y), O]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying a symmetry patternQQi the form [F(x),G(x)*y+H(x)]

--- Trying Lie symmetry methods, 2nd order ---

, ~—> Computing symmetries using: way = 3~ [0, y]




v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 54

‘0rder:=6; ‘
‘dsolve(x*diff(y(x),x$2)+x*diff(y(x),x)-exp(x)*y(x)=0,y(x),type='series',x=0);

1 1 7 29
— 14+ = 2 3 4 5 6
y(@) clx( T6% T % T 1m0 T 10s00% TO )

1 1 7
+ ¢ (ln (x) (x + éz?’ + Ex‘l + @xs +0 (x6)>

2 11 109
1l—g—2= 3 4 5 6
( 7= 5% ~5a® " as00” TO W)

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 70

AsymptoticDSolveValue [x*y'' [x]+x*y' [x]-Exp[x]*y[x]==0,y[x],{x,0,5}]

N\ J

() — ¢ 7—x5+z—4+x—3+x
Y 2\180 " 72 " 6

+o (ﬁ (—232* — 3362° — 1728z + 864) + %z(mg +122% + 72) 10g(w))
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2.10 problem 7.3.8 (e)
2.10.1 Maple step by step solution . . . . . ... ... ... ...... 234

Internal problem ID [5524]
Internal file name [OUTPUT/4772_Sunday_June_05_2022_03_05_29_PM_46121535/index. tex]|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.8 (e).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__linear__constant__co-
eff", "second order series method. Ordinary point", "second order series
method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

w2y” +$2y/ +y:v2 =0

With the expansion point for the power series method at x = 0.

Simplyfing the ode gives
y'+y +y=0

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.
Let
y' = f(z,y,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to

0 by change of variables) and assuming f(x,y,y’) is analytic at xo which must be the
case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y}. Using
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Taylor series gives
(&) = y(wo) + (2 — o)/ (wo) + =

B a2 23
= Yo + TYq + ?flmo,yo,y(’) + af |z0,yo,y6 + ...

xn+2 dnf
—_— l PR
_y0+$yo+zo(n+2)!dxn

Zo,yo,yé
But

df 8fdw+8fdy+6fdy
dz  Ozdzx Oydr 0y dx

_of [ of , Of ,
~or " ayY TayY
ﬂ+gy/+ﬁ
oy’
“_L(4)
_ 90 9 (df
= oz (ae) * o) Y+ o (2
Bf d (&f
da:3_%( )
2(

2
& f o &f\ ,, 8 (d&f
?) (8ydw2> Y+ oy oy’ <dx2> f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fo=-y —y
dFy
=20
! dx

_ O0F, + O0F, |, + OF,
- Oz oy Y oy’
=Y

dF,

T dr
_0R  9R ,, OR

or Oy y oy’
= y,
_dF,
C dx
_OF, OF, , OF
- Oz + oy v+ Yy’
=—y -y

dF3

T dz
OF; O0F3; , OF;
= F:
ox + 8yy + oy’ s

=Y

Fo

Fy

Fy

F;

Fy

Fy

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

Fy = y(0)
F, =4/(0)
Fy = —y/(0) — y(0)
Fy =y(0)

Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1 1 1 1
= ]_—— 2 3= 5 _— 6 T2 4 5 / 6
Y ( 5% +6:c 150% +720x y(0)+ ( = 5% —|——24z 0% y(0)+0(x)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

n=0
Then

o0
E nana:
n=1

o0
E n(n —1) a,x" -2
n=2

Substituting the above back into the ode gives

Z n(n—1)a,z" % = — <Z nanx“_1> - (Z anx"> (1)

n=2 n=0

Which simplifies to

(Z n(n —1) anx"_2> + (Z nanx"_1> + (Z a,mc") =0 (2)

n=2 n=0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nn—1)a,z" 2= Z (n+2)ap2(n+1)z"
n =2 n=0

5t = 3 04 D

n =1 n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n+2)api2(n+1) x") + (Z (n+1) an+1x”> + (Z anx"> =0 (3

For 0 < n, the recurrence equation is

n+2)api2(n+1)+(n+1)ap1 +a, =0 (4)
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Solving for a2, gives

_NOpy1 + An + Any
(n+2)(n+1)
(5) Ap, Gpt1

n+2)(n+1) n+2

An4+2 =

For n = 0 the recurrence equation gives

2a2+a1+a0=0

Which after substituting the earlier terms found becomes

For n = 1 the recurrence equation gives

6as + 2a; +a; =0

Which after substituting the earlier terms found becomes

Qo
“=%

For n = 2 the recurrence equation gives

12&4 +303 + a9 = 0

Which after substituting the earlier terms found becomes

a1

a4=ﬂ

For n = 3 the recurrence equation gives

20&5 + 4a4 +a3 = 0
Which after substituting the earlier terms found becomes

as = ——— — —(—

120 120
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For n = 4 the recurrence equation gives

30&6 + 5a5 + a4 = 0

Which after substituting the earlier terms found becomes

ag = %o
°7 720
For n = 5 the recurrence equation gives

42&7 + 6(16 + a5 = 0

Which after substituting the earlier terms found becomes

f— al
~ 5040

ar

And so on. Therefore the solution is

o0
y=§ anx"
n=0
_ 3 2
=a3x” +ar” +a1x +ap+ ...

Substituting the values for a,, found above, the solution becomes

3 4
— _% G\ 2, QT | ¢1T (_ﬂ_ﬂ) 5
y “°+“1x+< 2 2)x+ 6 " 24 T\T120 120/% T

Collecting terms, the solution becomes

2 6 120

1 1 1 1 1
y = (1 — -z’ 4 -1’ — —x5> ao + (x — -+ ' - —x5> a1+ 0(z%) (3)

At z = 0 the solution above becomes

1 1 1 1 1
y = (1 - §m2 + 6303 - anf) a + (x -+t - —x5> ¢+ O(z%)
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Summary
The solution(s) found are the following

1, 1, 1 1
B T S . B P SUTL
4 ( 2" 76" " 120° T 720 )y(O)

1 1 1 1 1 1
y = (1 — -+ o1 — —xS) a + (x — -+ —at - —xs) e+ 0(z%) (2)

F e D N e R e N S SR AN
e N R A AR R AR AR
3 7S SONNANNN NV VY
FGam N N N N N T N S AR N TR
Nt SN NN ) N R N N S R TR
2777 7==~>NNNAN VY
1777 77=~xNNN VAV
H1777777=~NNNAV VLV
FII017 77NNV VL L
Ay o T o VR
dx ¥ I UPIANSANN=/ L
PAANANAANANNNN=2/ /LT
AN AANNAANNNNNS——2// /)]
VAN AN AN~ 77/
—o VAANAANANNN NSNSy
VAAAANANAANNNNN S s
AN AN AAANNNNNNS S
I I S
AA A A AN AN NN S S
—&\\\\\\\\\\\\\\\\\\N_
-4 -3 -2-1 0 1 2 3 4

y(x)

Figure 3: Slope field plot

Verification of solutions

1 1 1 1 1 1 1
— ]_—— 2 — 3__ 5 - 6 _ 2 4_ 5 / 6
Yy ( 5% 167 ~120% T 790° >M®+(x 5% 5,0 T:ﬁgc)y(o)+0(ac)
Verified OK.
_ _l 13 5 _1 2 4 1 5 6
y=|[1 21’ —|—6m — 2’ )a+|z—c2’+ 2 — —2° |+ O(a%)

Verified OK.
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2.10.1 Maple step by step solution

Let’s solve

"n__

y'=—y -y
° Highest derivative means the order of the ODE is 2

7

Yy
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
v +y +y=0
. Characteristic polynomial of ODE
r’+r4+1=0
° Use quadratic formula to solve for r
r = DV
° Roots of the characteristic polynomial

_ 1 V3 1 1V3
T_(_i_ﬁﬁ_§+3J
° 1st solution of the ODE
y1(z) = e~ 2 cos (%)

° 2nd solution of the ODE

yo(z) = e 2 sin (@)

° General solution of the ODE
y = a1y (z) + coy2()

° Substitute in solutions

Y= e 2 cos (@) ¢, + e % sin (@) Co

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 44

‘0rder:=6; ‘
‘dsolve(x“2*diff(y(x),x$2)+x‘2*diff(y(x),x)+x‘2*y(x)=0,y(x),type='series',x=0)#

y(z) = (1 — %x2 + %m?’ — %z"’) y(0) + (x _ Ll + —z— —w5> D(y) (0) + O(z%)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56

LAsymptoticDSolveValue [x~2xy' ' [x]+x"2*y' [x]+x"2*y[x]==0,y[x],{x,0,5}] J
5 ozt 2? > oz
— —_ = - — —_——t——-—+41
y(x) C2< 120+24 2+w>+01< 120+6 2—|— )
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2.11 problem 7.3.101 (a)
2.11.1 Maple step by step solution . . . . . . ... ... ... ... .. 243

Internal problem ID [5525]
Internal file name [OUTPUT/4773_Sunday_June_05_2022_03_05_30_PM_90207999/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.101 (a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__linear__constant__co-
eff", "second__order__ode_ can__be__made__integrable", "second order series

nn

method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

y' +y=0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,y,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the
case for an ordinary point. Let initial conditions be y(z¢) = yo and y'(zo) = y}. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2

2 y//(xo) +

y(x) = y(zo) + (& — 20) ¥ (o) + y" (o) + -+ -

B R 2
- yo + xyo + 5f|x07y07y(,) + ?f |xo,yo,y6 + e

oo xn+2 dnf
. !
=W D gl der

zO;yO:’yE)
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fo=—-y
dFy
=20
! dx

_ O0F, + O0F, |, + OF,
- Oz oy Y oy’
= —y/

dF,

T dr
_0R  9R ,, OR

or Oy y oy’
=Y
_dF,
C dx
_OF
- Oz oy Yy’
= yl

dF3

T dz

OF; O0F3; , OF;
= F:
ox + Oy v+ oy’ s

=Y

Fo

Fy

F;

Fy

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

Fy = —y(0)
Fy = —y/(0)
Fy = y(0)
F3 =14/(0)
Fy = —y(0)

Substituting all the above in (7) and simplifying gives the solution as

_ Lo, 1.4 1 6 La, L 5\, 6
y—(l 5% T 54% 72Oz)y(0)+(x 6% T 130 y'(0) + O(z°)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

oo
y=)_ an"
n=0

Then

oo

y/ — § nanzn—l

n=1
o)

y' = Z n(n —1) a,z" 2

n=2

Substituting the above back into the ode gives

Z n(n—1)a,z" %= — (Z anx"> (1)

n=2

Which simplifies to
(Z n(n — 1) anxn_2> + (Z anxn> =0 (2)
n=2 n=0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nin—1)az" % = Z (n+2)api2(n+1)z"
n =2

n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n+2)ani2(n+1) x”) + <Z anx”> =0 (3)

n=0 n=0
For 0 < n, the recurrence equation is

(n+2)api2(n+1)+a, =0 (4)
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Solving for a2, gives
an
n+2)(n+1)

a/n+2 = _(

For n = 0 the recurrence equation gives

2a2+a0=0

Which after substituting the earlier terms found becomes

Qo
Ao = —E
For n =1 the recurrence equation gives
6a3 +a; = 0

Which after substituting the earlier terms found becomes

ai
as = —E
For n = 2 the recurrence equation gives
12&4 +ag = 0

Which after substituting the earlier terms found becomes

a4 = %o
Y
For n = 3 the recurrence equation gives
20@5 + a3 = 0

Which after substituting the earlier terms found becomes

a1
a5 = ——
° 7120
For n = 4 the recurrence equation gives
300/6 + a4 = 0
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Which after substituting the earlier terms found becomes

T 120
For n = 5 the recurrence equation gives
42a7 + a5 = 0

Which after substituting the earlier terms found becomes

a7 = — 1
" 75040

And so on. Therefore the solution is
o0
Y= Z anx"
n=0
=asd+ar’ +az+ag+...
Substituting the values for a,, found above, the solution becomes

+ Laot? — ranz? + Lagat + st +
= Q a1 — -ax — —Za1T — Qo — a1
) 0 1 5% g™ 54%0 120

Collecting terms, the solution becomes

1 1 1 1
y = (1 — Eazz + ﬂx‘l) ao + (x — 6x3 + an?) a1 + O(z°)

At z = 0 the solution above becomes

1 1 1 1
y = (1 — §x2 + ﬂx‘l) ¢ + (x — éx?’ + ons) ¢+ O(z%)

Summary
The solution(s) found are the following

1 1 1 1 1
y= (1 — §x2 + ﬂx‘l — macG) y(0) + (ac - 61}3 + HOxS) y'(0) + O(z°)

1 1 1
y= (1 — §x2 + ﬂx“) a + (x — -z + —w5) c2 + O(z%)
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Figure 4: Slope field plot

Verification of solutions

1 1 1 1
B . S o S R SRR Y 6
Y < 5% —|—2x 720x>y(0)+(w z” + x)y(O)—l—O(x)

Verified OK.
1, 1, 14 5 6
y=|(l—=z"+ =2 e+ |z — =z2°+ —=z 02+O(:1:)

Verified OK.

2.11.1 Maple step by step solution

Let’s solve

7

Yy =y
° Highest derivative means the order of the ODE is 2

!

Y
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y'+y=0
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° Characteristic polynomial of ODE

r4+1=0

° Use quadratic formula to solve for r

° Roots of the characteristic polynomial
r=(=LI)

° 1st solution of the ODE
y1(z) = cos (x)

° 2nd solution of the ODE
ya2(x) = sin (z)

° General solution of the ODE
y = c1y1(z) + cy2(w)

° Substitute in solutions

y = cos (x) ¢1 + co sin (z)

Maple trace

"Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

<- constant coefficients successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

‘Order:=6;
Ldsolve(diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);
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v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42

kAsymptoticDSolveValue [y'' [x]+y[x]==0,y[x],{x,0,5}]

z® 28 xt  z?
r _r r_r
y(m)—>02(120 5 +£L‘)+C1(24 5 T )
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2.12 problem 7.3.101 (b)
2.12.1 Maple step by step solution . . . . ... ... ... ... .. 247

Internal problem ID [5526]
Internal file name [OUTPUT/4774_Sunday_June_05_2022_03_05_31_PM_62980122/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.101 (b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

2y +(1+z)y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
2y +(1+2z)y=0

The following is summary of singularities for the above ode. Writing the ode as
¥ +p(@)y +4q(z)y=0

Where
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Table 28: Table p(x), g(z) singularites.

p(z) =0
singularity | type

singularity type

z=0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [00]
Irregular singular points : [0]

Since z = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since z = 0 is not regular singular point. Terminating.

Verification of solutions N/A

2.12.1 Maple step by step solution

Let’s solve

y'z3+ (1+x2)y=0

° Highest derivative means the order of the ODE is 2
Y
° Isolate 2nd derivative
y' = Ui
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y' + “:—;”)y =0
° Multiply by denominators of the ODE
Y2’ +(1+2)y=0
° Make a change of variables
t=1In(z)

OJ Substitute the change of variables back into the ODE

o Calculate the 1st derivative of y with respect to x , using the chain rule
Y = (gy(t) ¢ (z)
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o Compute derivative

’_ %y(t)
-z

o Calculate the 2nd derivative of y with respect to x , using the chain rule
2
v = () t@) + (@) (Su(t)
o Compute derivative

d2 d
" _ dT2y(t) _ Zy()
Yy = "2 2

Substitute the change of variables back into the ODE

Ly Ly
(242 - #40) 52+ 1+ 2)y(0) =0

Simplify

z(y(t) - 2y(®)) + (1 +2)y(t) =0

Isolate 2nd derivative

Ly(t) = L2 4 Ly

Group terms with y(¢) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin
my(®) + S = Gy(®) = 0

Characteristic polynomial of ODE

P+ _r=0

Factor the characteristic polynomial

r’c—retz+l __
=0

Roots of the characteristic polynomial
— <z+\/—3z2—4z _—z+\/—3az2—4z>
2x

1st solution of the ODE

(z+\/m)t
(e ="

2nd solution of the ODE
(—o+V"Ba7—12)t

y2 (t) = e 2z
General solution of the ODE

y(t) = c1yi(t) + caya(t)

Substitute in solutions
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(a:+ —39:2—4z)t (—z+\/m)t
y(t) = cj€e 2% + coe™ 2z
o Change variables back using ¢ = In ()

(.7;+\/ —3m2—4m) In(x) (—m+\/ —3m2—4m) In(z)
Y = cie 2w + coe™ 2z

° Simplify

m+\/—312—4m _—z+V —3z2—42
Yy =T 2z + cox 2z

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful

<- special function solution successful”

X Solution by Maple

p
‘Order:=6;
‘dsolve(x“3*diff(y(x),x$2)+(1+x)*y(x)=0,y(x),type='series',x=0);

No solution found
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v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 222

e

kAsymptoticDSolveValue [x~3xy' ' [x]+(1+x)*y [x]==0,y[x],{x,0,5}]

~—

_2i 520667425699057iz%2  21896102683ix7/2  19100991ix°/2
y(z) = cre” Ve - +

131941395333120 21474836480 41943040
_ 3367iz%/? _ 194208949785748261x°5  5189376335871z*  846810601x3

8192 21110623253299200 + 2748779069440 1342177280
2053872 _ 273z 13iy/z

524288 912 + 16
_ 520667425699057iz%/%  21896102683ix7/2 _ 19100991325/ 3367iz>/? _194208¢

131941395333120 * 21474836480 41943040 + 8192 211101

—|—1) —|—Cg€%$3/4 (
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2.13 problem 7.3.101 (c)

Internal problem ID [5527]
Internal file name [OUTPUT/4775_Sunday_June_05_2022_03_05_32_PM_51279556/index. tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.101 (c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y”w+y'w5+y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

y//$+y/$5 +y= 0
The following is summary of singularities for the above ode. Writing the ode as

Y +p(@)y +q(z)y =0

Where
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Table 30: Table p(x), g(z) singularites.

p(z) = z*
singularity type

q(z) = ;

singularity type

T =00 “regular”

z=0 “regular”

r=—00 | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0o, —00, 0]
Irregular singular points : [0o]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
y//w+y/x5 +y =0

Let the solution be represented as Frobenius power series of the form

00
y = § an xn+1‘
n=0

Then

(n+7)a,z"t

(n+7r)(n+r—1)a,z""?

<
|

e 10

3
I
o

Substituting the above back into the ode gives

<Z (n+r)(n+r—1) an$n+r_2> x+ <Z (n+r) anx"+’"_1> x° + (Z anx””) =0

n=0 n=0

Which simplifies to

<Z xn+r—1an(n+r) (n+r— 1)) + (Z w4+n+ran(n+’r)) + <Z anxn+r) =0 (2A)

n=0
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The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"+"~!
adjusting the power and the corresponding index gives

and

o

o0
> aa,(n+r) =) ans(n+r—5)z""
n=>5

n =0

oo o0
2 :anxn—i—'r — 2 :an_lxn—i—r—l

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

<RZ:0 2 e, (n+1)(n+r— 1)> (2B)

+ (Z an—s5(n+1r—75) x"”_l) + (Z an_lz”+T_1> =0
n=>5 n=1

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" la,(n+r)(n+r—1)=0
When n = 0 the above becomes
T agr(=1417) =0

Or
T agr(=1417) =0

Since ag # 0 then the above simplifies to
T r(=1+7)=0
Since the above is true for all x then the indicial equation becomes
r(=1+7)=0
Solving for r gives the roots of the indicial equation as

r =

’l"2=0
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Since ag # 0 then the indicial equation becomes
T r(=14+7)=0

Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

N n=0
y(z) == (ni an:c")
y2(z) = Cy1(z) In (z) + (g bna:">
N -
yi(z) = nf; apz"tt

y2(2) = Ot (= (Z bz )

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting » = 1 in Eq.

(2B) gives
1

“ =T
Substituting n = 2 in Eq. (2B) gives

1
r(1+7r)?@2+7)

a9 =

Substituting n = 3 in Eq. (2B) gives

1
r(l+7r)?@2+7r)?@B+7)

ag = —
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Substituting n = 4 in Eq. (2B) gives

1
S A+ @B+ @+

For 5 < n the recursive equation is
an(n+r)(n+r—1)+a,s5(n+7—5)+a,-1 = (3)

Solving for a, from recursive equation (4) gives

_ Man—5 +T0r—5 — dAn—5 + an—1
(m+r)(n+r—1)

A, =

Which for the root r = 1 becomes

—NAp_5 + 4ap_5 — A1
(n+1)n

ap =

(5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n Qn an
ao 1 1
1 1
a1 | a0 2
1 1
___ 1 1
2 | T %) 12
an | — 1 _1
3 r(147)(247) (3+r) 144
s 1 1

r(1+r)2(2+7)(3+r)2(4+r) | 2880

For n = 5, using the above recursive equation gives

—r9 —16r® — 10677 — 3767% — 769r° — 9047* — 564713 — 144r2 — 1
rA+r)?2+7r)°B+r)’@+r)G+r)

Which for the root r = 1 becomes

as =

2881

% = 786400

And the table now becomes
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n | Qny an
ag 1 1
1 1
M| i 2
1 1
%2 | S22 12
ae | — 1 _1
3 r(1+r)2(2+m)2(3+1) 144
a 1 1
4 r (1) 2@+ 2(3+r) 2 (d+r) 2880
a —r®—16r8—-106r"—376r% —769r5 —904r4 —564r3—144r2—1 | _ 2881
5 r(147)2(24r)? (3+r)* (4+7)2(5+7) 86400

Using the above table, then the solution y; () is

yi(z) = x(ao + a1z + agz? + asz® + auzt + asz® + agzb. .. )
z z2 z* 2881x°
(12, T _ 6
"’( 212 122 " 2830  sedoo T O ))

Now the second solution y(z) is found. Let
N —To = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = ap
___ 1
 or(l47)
Therefore
lm -t =lm- T
rore r(L4+7) 0 r(l1+7)
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(z) = Cy1(z) In (z) + (Z bn$n+r2>

n=0
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Therefore

2 2
T X
n=0

T
n i (bna:"*r2 (n+ 7"2)2 B bzt (n + rg))

= Cyi(z) 1n(a:)+20y1( z) Cyl( ) (Zw 24n472h (n413) (—1+n+7‘2)>

xT x2
n=0

Substituting these back into the given ode 3"z + y'z° + y = 0 gives

<0y1'<x> In(2) + 2C@) _ Cn(@)

T x2
o0 bnxn-i-rz (n + ,,.2)2 bnxn-i-rz (n + 7-2)
+ ; ( 2 — 22 T
Cyi(x) 2 bpz™ 2 (4 1) 5
+ (C’y'l(x) In(z) + — + ; - x

=0

+ Cyi(z) In (z) + (i "+’"2>

Which can be written as

T

oo bnxn—l—rz (TL + 7-2) 5 (7)
+ (; . x
0 bnxn+r2 (n + ,,.2)2 bnxn—l—m (n + 7-2) > it

(010)5° + @)z + @) @)+ (D 2oy 0t 0

n=0
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But since y;(z) is a solution to the ode, then

vi(@)2* +yl (@) z +y1(z) =0

Eq (7) simplifes to

( (2y’1x(w) 3 ylx(;ﬂ)) R x4) o4 (i b,z én + rz)> 5 9

n=0

0 bn.’L'n+T2 (n + 7"2)2 bnxn—f-m (n + 7”2) ° -
+<Z( a? - ? oo (2 b | =0
n=0

n=0

o0
Substituting y; = Y a,z™*™ into the above gives
n=0

(2(% g, (n+ 1"1)) T+ (25— 1) (i anx’””)) C

n=0 n=0
9
- ©
(Z g~ Hnt2p, (0 + r2)> z% + (Z T2 2h (n 4+ 15) (=1 +n + r2)> z? + ( bnr"+’"2) x
+ n=0 n=0 n=0
z
=0
Since r; = 1 and r, = 0 then the above becomes
(2(2 z"an(n + 1)) z+ (z°—1) (Z anx”“)) C
n=0 n=0 (10)

+ n=0 = _
X

T
(Z x“_lbnn> z% + (E 2", n(n — 1)> z? + (Z bnzn) T
n=0 n=0 0
Which simplifies to

(Z 20 z"an(n + 1)) + (Z C$n+5an) + Z (—C’an;pn) (2A)

n=0 n=0 n =0

+ (i nx4+”bn> - <§:nwn_1bn(n - 1)) + (i bnﬂU") =0
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The next step is to make all powers of £ be n — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"~! and
adjusting the power and the corresponding index gives

Z2C’xann+1) Z2Can !

n =0
i": C z"*5q,, = i Cap_ex™ !
n =0 n=6
i (—Ca,z™) = i (=Cap_12™)
n =0 n=1
f: nz*tm, = i (n —5)by_sz"!
n =0 n=5

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n — 1.

(; ZC’an_lnx”_1> <Z Ca,_ez" > 2:: (—Cap_1z"") (2B)
+ (i (n—5) by_sz"~ ) (Z nz" b, (n—1) >—|— <Z bn_lx”_1> =0

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C+1=0

Which is solved for C. Solving for C' gives
C=-

For n = 2, Eq (2B) gives
30@1 + bl + 2b2 =0
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Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

3
2b2+§=0

Solving the above for by gives

3
b2:_4_1

For n = 3, Eq (2B) gives
500,2 + b2 + 6b3 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

7
6bs — ¢ =0

Solving the above for b3 gives ;
bs = —
°7 36

For n = 4, Eq (2B) gives

7CG3 + b3 + 12b4 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

35
12b4 + m 0
Solving the above for b, gives
by — — 50
1T 1728

For n =5, Eq (2B) gives
90&4 + b4 + 20b5 =0

Which when replacing the above values found already for b, and the values found earlier

for a,, and for C, gives
101

2065 — 1320 = 0
Solving the above for b gives
b — 101
® 86400

Now that we found all b, and C, we can calculate the second solution from

Y2(z) = Cyr(z) In (z (Z bn$n+r2>
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Using the above value found for C = —1 and all b, then the second solution becomes

x x2 zt 2881x°
) (a1 8 _ 6y) )1
va(z) = (=1) (””( T 13 122 " 2830 sedo0 T O )>) B (=)
32 73 35x* 1015
1 - Rl 6
1=+ 56 ~ 7728 T agaoo T O

Therefore the homogeneous solution is

Yn(T) = c1y1() + coya(T)
= Cl””(l N g + g N % + 2;6;0 - 28868410%5 + O(xﬁ))
" CQ<(_1) (m(l - g * 310_; a %34 + 2520 a 28868410965 - O(m6))) @)+
2 3 4 5
N 3% + 73% N t??;s + égigo + O(xfj))

Hence the final solution is

Y=1Yn

r 2?2 2zt 2881x°
= 1__ - _ 6
clx( 512~ 144 T 2880 ~ seao0 T O >)
¢ o« 2®  a*  28814° 9r2 7
T\ l-5+ 51 - )1 122 4 &
+C2( x( 2 " 12 7 144 T 2880 ~ 86400 +O(‘”)) n(z)+1-—-+ o

4 10125
3o Oz—i-O(xG))

~ 1728 T 86400

Summary
The solution(s) found are the following
r x? o8 zt  2881z° 6
v= clx(l ~5 713 122 " 2830  sedo0 T O ))
z 2 8 zt  2881z° 6 3z?
— 4z 7 — _2 (1
-|-02( x(l 2+12 144+2880 86400 +O(x))ln(x)+1 1 (1)
723 35zt 101z°
- _ O (28
*36 1728 T soa00 T O ))
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Verification of solutions

4 - _ 6
2+ 12" 122 T 2880 ~ sea00 T O ))
3 4

r =z x 288125 6 32 73

T 9T 9 T 14 - 1 12

+C2( x(l 2" 12" 142 " 2880 ~ seao0 T O )) n(z)+1-—-+ o
35zt 101z° ]

~ 1728 T 86400 O(x ))

(1 z 28 2® 2t 2881a°
y:CL’E J—

Verified OK.
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Maple trace

s N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
=-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functionms
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power| @ Moebius
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and y(x)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functionms:
-> Bessel
-> elliptic
-> Legendre
=> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and y(x)
trying to convert to a linear OB with constant coefficients
trying to convert to an ODE of Bessel type

trying to convert to an ODE of Bessel type
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 58

‘0rder:=6;
‘dsolve(x*diff(y(x),x$2)+x“5*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

= — x4+ - + - 0
y(z) = e (1 Zx 12.’1; 144z 2880x 86400x (x )

1 2 1 3 1 4 1 5 6
+C2(1n(x)( 73T T Y1 st O

3, T, 3 , 101 . ]
e R 0
* <1 1° 3% " 128" T seano” T O )

v/ Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85

LAsymptoticDSolveValue [xky' ' [x]+x75*y ' [x]+y [x]==0,y[x],{x,0,5}]

1
y(z) = (mx(z?’ — 122° + 72z — 144) log()
N —47z* + 48022 — 216022 + 1728z + 1728) . ( x? zt 2 2? )

2

1728 9880 144 12 2 1%
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2.14 problem 7.3.101 (d)

Internal problem ID [5528]
Internal file name [OUTPUT/4776_Sunday_June_05_2022_03_05_34_PM_16023406/index.tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.101 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

sin(z)y" —y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
sin(z)y" —y=0

The following is summary of singularities for the above ode. Writing the ode as
¥ +p@)y +q(z)y=0

Where

265



Table 31: Table p(x), g(z) singularites.

q(CL’) = _sinl(z)
singularity type

p(z) =0
singularity | type

r=mn/ | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [7Z]
Irregular singular points : [00]

Since x = 0 is regular singular point, then Frobenius power series is used. Let the
solution be represented as Frobenius power series of the form

e
y = E anxn+r
n=0

Then

(n+r) a,z"tr1

Me 17

(n+7r)(n+r—1)a,z""?

<
|

I~

I

o

Substituting the above back into the ode gives

sin (z) (Z m+r)(n+r—1) a,nxn-l—r—2) _ <Z anmn—i—r) —0 (1)

n=0

Expanding sin (z) as Taylor series around z = 0 and keeping only the first 6 terms
gives

1 1 1
sin(x)=x—6x3+ma:5—%m7+...
_ 1 3 1 5 1 7
=T 6% T 1207 " 5040
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Which simplifies to

i (_xn+r+5an(n +r)(n+r— 1))

2 5040
N (i "B, (n+r)(n+1— 1))
2 120 (2A)
> e, (n+r)(n+r—1)
t2 (‘ 6 )
n =0

n (Z "t ra,(n+71)(n+r— 1)) + Z (—anz™") =0

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

i (_z”+’"+5an(n ) (ntr— 1)) _ i (_an_6(n Yr—6) (n—T+r) m"+’"_1)

2 5040 2 5040
2" e, (n+r)(n+r—1) i an_s(—4+n+7)(n—5+7)2" !
120 N 120
n =0 n=4
i gt a,(n4r) (n+r—1)\ _ i _Gn2(n+7—=2)(n—=3+r)z" !
~ 6 A 6

n = n=2
Z (—anxn—‘rw) = Z (_an—lwn+T_1)
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n +r — 1.

i _Gng(n+r—6)(n—T+r)z" !
5040
N an4 (—4+n+71)(n—5+7)z" 1
2 120 (2B)
+ Gn s(n+r—2)(n—3+7r)z"!
n =2 6

(anﬂ"l n+r)(n+r—1> Z (—an_1z™1) =0

0

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" la,(n+r)(n+r—1)=0
When n = 0 the above becomes
T agr(=147) =0

Or
T agr(=1417) =0

Since ag # 0 then the above simplifies to
T r(=14+7)=0
Since the above is true for all x then the indicial equation becomes
r(—14+7)=0
Solving for r gives the roots of the indicial equation as

r =

o = 0
Since ag # 0 then the indicial equation becomes

T r(=1+7)=0
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Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

y1(z) = =™ (Z anz”>

12(2) = Cy(2) In (2) + 27 (Z b)

Or

O (i x)

4e(e) = Cn() In () + (f; b)
. 2

n(x) = 2 apzt™™

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting n = 1 in Eq.
(2B) gives

1
M)
Substituting n = 2 in Eq. (2B) gives
rt—r?+6
a9 = 3
6r(l+r)°"(2+r)

Substituting n = 3 in Eq. (2B) gives

423+ 22 4+ 1r+3
aAq =
ST s+’ B )

Substituting n = 4 in Eq. (2B) gives

ar — Tr8 4+ 5617 4+ 1547% + 14075 + 1037* + 52473 + 153672 + 18007 + 1080
‘ 360r (1+7)°(2+7)2B+7)2d+r)
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Substituting n = 5 in Eq. (2B) gives

B r® + 12r7 4+ 59r% + 15375 + 2397* + 2731 + 33172 + 372r + 225
15r(14+7)°2+r)B+r)@A+r)2G+r)

as

For 6 < n the recursive equation is

_aps(n+r—6)(n—T+r) +an_4(—4—|—n+r)(n—5+r)

5040 120 )
. —2)(n—3
_Gna(ntr 6)(” +T)+an(n+r)(n+’r—1)_a’n—1=0

Solving for a,, from recursive equation (4) gives

_ nPap_g — 42n%ay_4 + 84010, o + 2070y — 84NTan_g + 1680nTAn_2 + T20n_6 — 4277054 + 840r

(4)

an

Which for the root r = 1 becomes
(@n_6 — 42a5,_4 + 840a, ) n? + (—1la,_¢ + 294a,_4 — 2520a,_2) n + 30a,_¢ — 504a,,_4 + 1680a,,_
50401 (1 4+ n)
(5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

a, =

n | Qnyr Qn,
ao 1 1
1 1
a1 r(1+4r) 2
rt—r246 1
Q2 | — 70N o)
6r(1+r)*“(2+r) 12
a r4+2r342r24r43 1
31 Br(14n)%(2+1)2(3+r) 48
a 7r8 45677 4+154r% 414075410314 452473 +1536r2+1800r+1080 | 1
4 360r(1+7)2 (2+7)2(3+7)2 (4+r) 192
a 84127745976 415315 4-239744-273r34-331r24-372r4-225 37
5 157(147)? (2+7)* (3+7)(4+7) (5+7) 28800

Using the above table, then the solution y; () is

yi(z) = x(ao + a1z + a0z + asz® + asx* + a5z’ + agzb. .. )

N S A S LT
N 2 12 48 192 28800
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Now the second solution ys(z) is found. Let
T —T9 = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = a;
1
Ty (1+7)
Therefore
lim _ = lim _
rorer(147r) r—or(l+7)
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

n=0

y2(2) = Cya(w) In () + (Z bnm’”ﬁ)

Therefore

2 (@) = Cf () In ) + 2D (Z “m("*”’)

= Cy)(z)In (z) + Cy1 (Z LTI (4 m))

n=0

2Cy(x) _ Cui(z)

x2

N i (bna:"*r2 (n+ 7"2)2 B bzt (n + 7'2))

2 2
T x
n=0

= Cyi(z) 1n(x)+20y1( z) Cyl( ) (Zw 24n472h (n413) (—1+n+7‘2)>

T x2
n=0
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Substituting these back into the given ode sin (z) y” — y = 0 gives

2Cyi(z) _ Cyi(z)

xr2

L (b (n 4 19)° byt (n 4 N
—I—Z ( x(z 2) x(2 2)>> —Cyi(z) In(z)— (Z b,x™t 2) =0

n=0 n=0

sin (z) (C’yi’ (z)In (z) +

Which can be written as

(610 (@)1 (0) = ) o)+ sn o) (242 - 260 ) ) 0

2

e n+r2 2 n+ro 00
+ sin (z) (Z (bnw 52?} +7) - P x(zn - 7‘2))) - (Z bn$"+rz> =0
n=0

n=0

(7)

But since y;(z) is a solution to the ode, then

sin (z) 3y (z) — y1(z) =0

Eq (7) simplifes to

sin () <2y’1(w) _ yd«%‘)) o

z x? (8)
e n+ro 2 n+ro o
+ sin () (Z (bnw g, +19) _ b x(;l + 7‘2))) _ (Z bnxn—i—m) =0
n=0 n=0

o0
Substituting y; = Y a,z™*™ into the above gives
n=0

sin () (2 ( S gt (n 7‘1)) z— (i anxn+n)) C

n=0 = n=0 (9)
+ sin (z) (Z g2, (n+ o) (14 + 7‘2)) - <Z bnx”+T2> =0
n=0 n=0
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Since 71 = 1 and r5 = 0 then the above becomes

sin (z) (2 (20 z"a, (1 + n)> T — (20 anx1+n>> C 1)

xr2

+ sin (z) (Zz" 2bnnn—l) (anx>=0

=0

Expanding 25“1(”) as Taylor series around z = 0 and keeping only the first 6 terms
gives
2sin (z)C' 1 1 6
T— 2C — 3Cx +606'x 252003: +...
1 1
=20 - -C2* —C R
377 "0 T2520 "
Expanding —% as Taylor series around x = 0 and keeping only the first 6 terms
gives
sin (z) C 1., 5 1 6
_—_ = — — C C ..
z Crgde - 120 x+5040 v
1
=— — —C’ —C’
C+507" ~ 120" T 500C "
Expanding sin (z) as Taylor series around z = 0 and keeping only the first 6 terms
gives
_ L 5 1 . L
Sin (2) =2 = 5+ 7957 ~ 5oag”

_ 1 3 1 5 1 7
=776 T 107 " 50407
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Which simplifies to

i _ C3z™%,(1+n) i Cz""a,(1+n)
2520 60

n =0 n=|

0 n+2
+nZ::O< Cz ag (1+n) > + (;Qanm"C(lJrn))
- . 2. C z""2q, > C z""a,

2. C z"*0q,, = nz"5b,(n — 1)
+ ; 5040 > +n§ <_ 5040 )

N i nzn+3fg(()n - 1)) N i (_na;l-i-nbg(n - 1))

+ inz“_lbn(n - 1)) + i (=bnz
n=0 n =0

(24)

The next step is to make all powers of £ be n — 1 in each summation term. Going

over each summation term above with power of z in it which is not already z™!

adjusting the power and the corresponding index gives

Z ( Cx“+625201 . n)> i (_ Can_7(;15;06) :v”—1>

=0 n="7

i C z"a,(1 +n) i Ca_syn(n—4)z™ !

o 60 ot 60
> Cz"%a,(14+n)\  « Ca,_3(n —2) "1
2 (_ 3 ) -2 (‘ 3 )
n =0 n=3
Z 2a,2"C(1+n) = Z 2Ca,_1nx
n =0 n=1
Z (—ap2"C) = Z (—Cap_1z™ )
n =0 n=1
Cz"%a, = Cap_sz"™!
n =0 6 B ;:; 6
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- Cz"a,\ Ca_synz™!
nz::(_ 120 )_;(_ 120 )

>, C z"*%q, B 2. Cap_rz™™
nz 5040 _; 5040

n =0 n=>6
nz"3b,(n — 1) _i (n—4)by_y(—5+mn)z" !
~ 120 = 120

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n — 1.

i (_ Can (;5;06) xn—l) N (i C’a_5+n(7éo— 4) xn—1>

n =7 n=>5

_ n—1 o0
n Z ( C’an 3 n 2)-’17 ) + (Z QC’an_lnxn_1>
Oo Ca,_sx™ ! > Ca_snx™ !
n— 1 n—3 54n
(<o) + (3 ) 4 3 (O

=3
Cap_gz™! 1 N i _(n=6)bns(n— 7)™t (2B)
25040 ) T 5040

4(-5+mn)z"!
— 120

(n—2) bn_26(n —3) w”_l)

+

Mg

Mg

+

+
M,M8

nz" b, n—l) Z bp_12" ") =0

n =1

+
N
NE

3
Il
=)
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For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C—-1=0

Which is solved for C'. Solving for C' gives
cC=1

For n = 2, Eq (2B) gives
30&1 - bl + 2b2 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

3

Solving the above for by gives ]
b2 = _4_1
For n = 3, Eq (2B) gives
(—CLO + 30&2) C
6

Which when replacing the above values found already for b, and the values found earlier
for a,, and for C, gives

—by+6b3 =0

Solving the above for bs gives

1
b3=—6

For n = 4, Eq (2B) gives

(—3a, +6 42a5)C _ %2 — by +12b, =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

)
1—6—|—12b4—0

Solving the above for by gives .

192

by =
For n =5, Eq (2B) gives

(ao - ].OOCLQ + 1080@4) C
120

— bz — by +20b5 =0
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Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

257
—1440+20b5—0

Solving the above for b gives
257

5~ 728800
Now that we found all b,, and C, we can calculate the second solution from

Y2(z) = Cyi(z) In () + (Z bnx’”r”)

Using the above value found for C = 1 and all b,,, then the second solution becomes

x x2 3715
=1 1+=4+—+—+— 6 1
Y2(z) (z( +2+12+48+192+28800+0(x )>) n (z)
w2 s
4 6 192  28R800

Therefore the homogeneous solution is

yn(z) = c1y1(z) + cay2(x)
3 ozt 3715

2
_ .o T 6
_Clw(1+2+12+48+192+28800+O(x))

2 3 4 5 2 3
+c2(1<x(1+f+x—+x—+w—+ 57 +O(x6)>)ln(a:)+1—3%—x—

2 12 48 192 28800 6
4 5
S5z*  257x 0 (xG))

192 28800

Hence the final solution is
Y=1Yn

=1z 1+§+ZII_2+.’E_3+.'E_4+ 37:1;5 —|—O(£L’6)
- 2 712 " 48 ' 192 ' 28800

r 22 ¥ z* 37 6 3z z3 b5zt
+C?(x(1+§+ﬁ+@+@+28800+O(z)>ln(‘”)+1_7_3_@

2572° 6
~ 98800 T O )>
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Summary
The solution(s) found are the following

=z 1+£+x_2+x_3+x_4+37_x5+0(x6)
y=a 2 " 12 T 48 " 192 " 28300
3

2 3 4 5 2
+c2(w(1+f+$—+x—+x—+ 512 +0(x6))1n(x)+1—3i—%(1)

2 " 12" 48 T 192 T 28800 1
Szt  257zP 6
~ 192~ 28800 1 O )>

Verification of solutions

N P A A L +0(z%)
y=a 2 " 12 T 48 T 192 " 28300
3x2 3 Bt

x zz 2 372 6
+c2(x(1+—+—+—+—+ —I—O(z))ln(x)—l—l—T—g—@

2 " 12 748 T 192 " 28800
25725 6
~ 8800 T O ))

Verified OK.
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x), dx)) * 2F1([z
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformatioms,
to LODEs admitting Liouvillian solutioms.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
—-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
=> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a/<> 0, e <> 0,
Change of variables used:
[x = arccos(t)]
Linear ODE actually solved:
=(=t72+1) 7 (1/2) ¥u () +(£73-t) *diff (u(t) , £) +(£74-2%t"2+1) *diff (diff (u(t) ,£),t) = O
<- change of variables successful”
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v/ Solution by Maple
Time used: 0.234 (sec). Leaf size: 58

‘0rder:=6;
‘dsolve(sin(x)*diff(y(x),x$2)-y(x)=0,y(x),type='series',x=0);

11 1 1 37
_ 14 = Lo, L 3, L 4, O 5 6
y(@) Clz( 22T Y%t i® tassae” O )

Lo, g 1 4 1 5 6
+02(1n(a:) (z+2x +12z —|-48x —|—192x + 0 (z°)

3, 1 5 257
12,2 23 2 a4 0 5 6
+< © 6% T 102% " ams00® TO)

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 85

LAsymptoticDSolveValue [Sin[x]*y' ' [x]-y[x]==0,y[x],{x,0,5}]

y(z) = (%ac(ac‘3 + 42” + 24z + 48) log(z) + 6i4 (—3z* — 162° — 802® — 64z + 64))

ot 2 z?
+CZ(1_92+£+E+?+J;)
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2.15 problem 7.3.101 (e)

Internal problem ID [5529]
Internal file name [QUTPUT/4777_Sunday_June_05_2022_03_05_37_PM_75403330/index.tex|

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.101 (e).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

cos(z)y" —sin(z)y =0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at g = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z¢) = yo and y'(zo) = y}. Using
Taylor series gives

(x — :po)?’
3!

(x — x0)2

y(z) = y(zo) + (x — o) ¥ (z0) + y" (z0) + -+ -

/ z? z? /
=Y + Y+ _flwo,yo,yé + 5.}0 |20,y0,y6 +e-

2
o0 xn+2 dnf

_ /

=W+ D T dan

/
Z0,Y0,Yg
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

R = sin (z) y
cos (z)
dFy

F,=—

' dr

_OR  OR , OF
Oox Oy oy’

= tan (z)y + sec (z)’y
dFy

T dr
_OR OR , OR

Oox Oy y oy’
= ytan (z)° + 2sec (z)® (y tan (z) + ')
ar,

- dz
oF, OF: OF:
_ 92 2y’+ 2

or Oy oy’

Fo

Fy

Fy

F3

Fy

— (tan (z)? + 6sec (z)? tan (z)) ¥’ + 6 sec ()? (sec (2t 4 200 @) _ 2) y

3 3
dry

T dz
_OF; OF; , OF;
Oz + ayy + oy’

— (24sec (2)" + (6 tan () — 16) sec ()?) ¥/ + z4y<(tan (2) + Z) sec (2)* + (_”a_n(w) _ l) sec

Fy

F3

24 12

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

=0

Fy =y(0)
Fy = 2y/(0)
F3 = 2y(0)

Fy = 44(0) + 8y/(0)

Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1 1
_ (1413 5 6 4 6\, 6
Yy ( Tt +180x)y(0)+ (x+12x + 502 y'(0) + O(z°)
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Since the expansion point £ = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

o0
n=0
Then

na,z" !

te\
I
NE

n=1

2

S
I
M8

n(n —1)a,z"™"

n=2

Substituting the above back into the ode gives

in(n —1az" %= . <§0 a"mn) (1)

cos ()

n=2

Expanding cos (z) as Taylor series around z = 0 and keeping only the first 6 terms
gives

1 1 1
cos(x)=1—§x2+ﬂx4—%x6+...
1 1 1
=1__2 o S
2" T 21" T

Expanding — sin (z) as Taylor series around z = 0 and keeping only the first 6 terms

gives
—sin(z) = —z + 1363 - Lx‘r’ +——z +
6 120 5040
1 1 1
= x4 -2®— 25+ _——1T

6 120 5040
Hence the ODE in Eq (1) becomes

]‘ 3 ]‘ 5 1 7 > n _
+( THET T 120% +5040x> (nZanx ) =0
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Expanding the first term in (1) gives

1- (Z n(n —1) anx"_2> - % . (Z n(n—1) anxn_2> + ;C— - (Z n(n —1) anx"_2>

n=2 n=2 n
8 = 1 1 1

. -1 " n—2 _ 3 T
720 <Z n(n —1) anz ) + < 767 " 120% T 5oa0” )

n=2

Expanding the second term in (1) gives

o0 6 o0 o0
_ n—2 _ 17_ . n—2 _ n
(Z n(n—1)a,z ) 20 (Z n(n —1)a,z ) + —z (Z anT )
n=2 n=2 n=0
—|—€ <;anx>—m-(nz:0anm>+—5oo (nzzoana:>—0
Which simplifies to
nx"a,(n —1) 2 nz"a,(n —1)
2 (_ 720 ) + (Z 24
n =2 n=2
- na,z"(n — 1)) - 9 = 1 (2)
+ — + nn —1)a,z" + —z'*t"a,
> (=5 2, 2 )
o0 xn+3an xn+5an o0 xn+7an
+<HZ:0 6 >+n§)(_ 120 >+<Z_: 5040)‘

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

i (_nx”+4720n— 1) > i < (n —4) an7240(n—5) x”)

n =2 n=>6

i nz"Fa,(n —1) & a,n 2(n —3)z"
24

n =2 =4

3
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Z (—z'"a,) = (—an_12™)
n =0 n=1
n+3 _ i Q3™
n =0 6 n=3 6
n+5 e Qp 5T
Z(_ 120 )‘n;(_ 120 )
2, g"tg, B 2\ G
4= 5040 nzﬂ 5040

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

= (n—2)an gn 3)x

= 3)
Z —Qp— 1.’L‘

(n+2)ani2(1+n)z )

n =2 n=0 n =1
(52) S () (S5 ) -

n =1 gives
6a3 — Qg = 0
Which after substituting earlier equations, simplifies to

ap
as = —

6
n = 2 gives

—ag +12a4 —a; =0
Which after substituting earlier equations, simplifies to

al

=19
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n = 3 gives

—3a3+20a5—a2+%20

Which after substituting earlier equations, simplifies to

Qo

%= 60
n = 4 gives

a a
é—6a4+30a6—a3—|—€1=0

Which after substituting earlier equations, simplifies to

_ % &
% = 180 T 90
n = 5 gives
as (05} ap
— -1 42a, — —_ - — =
4 Oa5+ ay a4+ 6 120 0

Which after substituting earlier equations, simplifies to

Qo ay

=315 T 504

For 7 < n, the recurrence equation is

(n—4)a,—4(n—5) (M—2)a,—2(n—3) mna,(n—1)
720 * 24 2 (4)

+ (n + 2) an+2(1 + n) —Qp_1 + On—3  Qn-5 n U7 0

6 120 5040

Solving for a2, gives

An+2
_2520n%a, + Tn*ay_4 — 210na,_s — 2520na, — 63n0,—4 + 1050na,_3 — an_7 + 42a,_5 + 140a,_4 — 84
B 5040 (n +2) (1 +n)
_ (2520n* — 2520n) ay, B Q7 N s

(5) 5040 (m+2)(1+n) 5040(n+2)(1+n) 120(n+2)(1+n)

(Tn? — 63n + 140) a,,_4 Qn3

5040 (n+2) (1+n)  6(n+2)(1+n)
(—210n2 + 10500 — 1260) an_s -
5040 (n + 2) (1 + n) (n+2)(L+n)
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And so on. Therefore the solution is

o0
y=)_ an"
n=0
_ 3 2
=a3r” t+ax” +a1;x+ag+...

Substituting the values for a,, found above, the solution becomes

=aq +ax+1ax3+ 1a:c4+ 1a:c5—|—
Yy =ao 1 60 121 600

Collecting terms, the solution becomes

1 1 1
y= <1 + éxs + @ﬁ) ap + (x + Ex‘l) a1 + O(z°) (3)

At z = 0 the solution above becomes

1 1 1
y= (1 + 6303 + @xf’) a + <x + ﬁx4> ¢, +0(z°)

Summary
The solution(s) found are the following

Y= (1 + L + 1 + ixﬁ) y(0) + (x + 1o + izﬁ) y'(0)+0(z%) (1)

6 60 180 12 90
y=|1+ lw?’ + lxs ci+ | z+ iz‘l c2 + O(z%) (2)
6 60 12

Verification of solutions

1 1 1 1 1
y= (1 + -+ 2 + —xﬁ) y(0) + (:c + —z' + —zﬁ) y'(0) + O(z°)

6 60 180 12 90
Verified OK.
13, 1 5 1 4 6
y= (1+6x +@x>cl+ <x+ﬁx>c2+0(x )
Verified OK.
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a symmetry of
checking if the LODE
-> Heun: Equivalence
-> trying a solution
-> Trying changes of

trying a symmetry

the form [xi=0, eta=F(x)]

is missing y

to the GHE or one of its 4 confluent cases under a power
of the form rO0(x) * Y + r1(x) * Y where Y = exp(int(r(x)
variables to rationalize or make the ODE simpler

of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a solution in terms of special functioms:

-> Bessel
-> elliptic
-> Legendre
—=> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius

-> hypergeometric

-> heuristic approach

-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius

-> Mathieu

-> Equivalence to the rational form of Mathieu ODE under a power @ M

@ Moebius
, dx)) * 2F1([a

oebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius

-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r

trying a symmetry of the form [xi=0, eta=F(x)]

trying 2nd order exact linear

trying symmetries linear in x and y(x)

trying to convert to a linear ODE with constant coefficients

-> trying with_

periodic_functions in the coefficients

--- Trying Lie symmetry methods, 2nd order ---

, ~—> Computing symmetries using: way = 5 [0, ul
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

‘0rder:=6;
‘dsolve(cos(x)*diff(y(x),x$2)-sin(x)*y(x)=0,y(x),type='series',x=0);

y(z) = (1 + éx3 + %ﬁ) y(0) + (w + éx‘l) D(y) (0) + O(z°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35

LAsymptoticDSolveValue [Cos[x]*y'' [x]-Sin[x]*y[x]==0,y[x],{x,0,5}]

x* o x3
Sl A
y(x) cz<12+a:)+cl(60+ 6 + )
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2.16 problem 7.3.102
2.16.1 Maple step by step solution . . . . ... ... ... ... ... 300

Internal problem ID [5530]
Internal file name [OUTPUT/4778_Sunday_June_05_2022_03_05_40_PM_71362295/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.102.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

x2y”—y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
m2 yll _ y — O

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
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Table 32: Table p(x), g(z) singularites.

p(z) =0

singularity type

singularity | type

=0 “regular”

Combining everything together gives the following summary of singularities for the ode

as
Regular singular points : [0, o0]

Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
:L,2yll _ y — O

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

.’172 <Z (’)’l + 7") (n +r— 1) anxn+r—2> _ (Z anxn—i-r) =0

n=0

Which simplifies to

<Z " a,(n+r)(n+71— 1)> + Z (—anz™") =0

n=0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of = are the same and equal
ton—+r.

<Zx”” n+r(n+r—1>+z (—anz™") =0 (2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)—a,z"" =0
When n = 0 the above becomes
z'aor(—1471) —apgz" =0

Or
(z'r(=1471)—2")ap=0

Since ag # 0 then the above simplifies to
(r2—r—1)xT=0
Since the above is true for all x then the indicial equation becomes
rP—r—1=0

Solving for r gives the roots of the indicial equation as
==+

N = N =
oSS

To =
Since ag # 0 then the indicial equation becomes
(rQ—r—l)mr=0

Solving for r gives the roots of the indicial equation as Since r; — 5 = /5 is not an
integer, then we can construct two linearly independent solutions

(5
n=0

=S
n=0
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o0

1,6

yl(q;) = E an;p""‘z"' 2
n=0
00

Ya(z) = Z bzt~

n=0

ol

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ap is arbitrary and taken as ag = 1. For 0 < n the recursive equation is

a,(n+r)(n+r—1)—a,=0 (3)

Solving for a,, from recursive equation (4) gives

a, =0 (4)

5

Which for the root r = % + becomes

ot

a, =0 (5)

At this point, it is a good idea to keep track of a, in a table both before substituting
r= % + é and after as more terms are found using the above recursive equation.

n | Gpy | Gy

Qo 1 1

For n = 1, using the above recursive equation gives
ay = 0

And the table now becomes

Qo 1
aq 0 0

For n = 2, using the above recursive equation gives

a2=0
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And the table now becomes

(0]

a1

a2

For n = 3, using the above recursive equation gives
as = 0

And the table now becomes

n | Gnr | Gn
ag | 1 1
a; | 0 0
az | 0 0
as | 0 0

For n = 4, using the above recursive equation gives
ag = 0

And the table now becomes

n | Gny | Gn
ap | 1 1
a1 | 0 0
as | 0 0
as | 0 0
as | O 0

For n = 5, using the above recursive equation gives
a5 = 0

And the table now becomes
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n | Gnr | Gn
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0
as | O 0
as | 0 0

Using the above table, then the solution y;(z) is

1, V5
yi(x) = 2272 (ao + a1Z + asx?® + asx® + asx* + asz® + agzb. . )

¥ (1+0())

1
= x§+

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 0 < n the recursive equation
is

bo(n+71)(n+7r—1)—b,=0 (3)

Solving for b, from recursive equation (4) gives

b, =0 (4)

5

Which for the root r =  — 2 becomes

o5

b, =0 (5)

At this point, it is a good idea to keep track of b, in a table both before substituting

r=1_ Y5 and after as more terms are found using the above recursive equation.

2 2

n bn T bn

)

by | 1 1

For n = 1, using the above recursive equation gives
b1 = O

And the table now becomes
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by | 0 0

For n = 2, using the above recursive equation gives

by =0
And the table now becomes
n | by | bn
by | 1 1
by | O 0
by | O 0

For n = 3, using the above recursive equation gives

bs =0
And the table now becomes
n | by, | by
by | 1 1
by | 0 0
by | O 0
bs | 0 0

For n = 4, using the above recursive equation gives
by =0

And the table now becomes

n | by | bn
bo|1 |1
b |0 |0
b |0 |0
b3 |0 |0
by |0 |0
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For n = 5, using the above recursive equation gives

bs =0
And the table now becomes
n bn,'r bn
bo | 1 1
b | 0 0
by | O 0
b3 | 0 0
by | O 0
bs | 0 0

Using the above table, then the solution ys(z) is

yo(z) = it (bo + b1z + baz® + b3z® + buz* + bsz® + bea®. . .)
14 O(a:6))

= Q;%_é (

Therefore the homogeneous solution is

)

= czat? (1+0(=%)) + o2 (1+0(z%)

Hence the final solution is

Y=1Yn

=

5 5

=2t ? (1+0(z%) + Cor2 ™2 (1+0(z%)

=

Summary
The solution(s) found are the following

S

5

y=eat ¥ (140() +ent ¥ (1+06)) )

Verification of solutions

[
S

5

y= clac%Jr 3 (1 + O(xG)) + 02:6%_ 2 (1 + O(x6))

Verified OK.
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2.16.1 Maple step by step solution

Let’s solve
CIJ2y" —y= 0
° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
V' =%
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
"n_ z_y2 =0
° Multiply by denominators of the ODE
wa/l —y= 0
° Make a change of variables
t=1In(z)

O Substitute the change of variables back into the ODE
o Calculate the 1st derivative of y with respect to x , using the chain rule
y = (4y()t'(z)

o Compute derivative

y/ _ %y(t)

o Calculate the 2nd derivative of y with respect to x , using the chain rule
v = (Gy®) ¢ +1'() (2y(®))

o Compute derivative

d2 d
" __ my(t) _ Ey(t)
- x? x2

Substitute the change of variables back into the ODE

a2 d
.’IJ2 ( dtzx?;(t) _ dtxyz(t)> _ y(t) =0

° Simplify
a2y(t) — %y(®) —y(6) =0
° Characteristic polynomial of ODE

r?—r—1=0
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° Use quadratic formula to solve for r

1+(v)
=T 2
° Roots of the characteristic polynomial
=33+ 7)
° 1st solution of the ODE
yi(t) = (i)t
° 2nd solution of the ODE
ya(t) = (%)
° General solution of the ODE
y(t) = cryi(t) + caya(?)
) Substitute in solutions
y(t) = cle(%_é)t + 026(%+§)t
o Change variables back using ¢t = In (z)
y = cle@_é) @ 4 CQeln(z)GJr%)
° Simplify

Y=z <x‘§cl + x§02>

Maple trace

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 39

‘0rder:=6;
|dsolve(x"2+diff (y(x),x$2)-y(x)=0,y(x) ,type='series',x=0);

y(z) = vz <93_§C1 + $§02> + O0(z%)

v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 38

LAsymptoticDSolveValue [x~2xy'"' [x]-y[x]==0,y[x],{x,0,5}]

(19

y(x) = c1z? (1-v5)

1
+ 621172
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2.17 problem 7.3.103
2.17.1 Maple step by step solution . . . . . ... ... ... ......

Internal problem ID [5531]
Internal file name [OUTPUT/4779_Sunday_June_05_2022_03_05_41_PM_82105689/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.103.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

3
xzy”+(x—z>y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous

part of the ODE.
3
r?y + (x—z) y=0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(x)y =0

Where

p(z) =
@)= =5
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Table 34: Table p(x), g(z) singularites.

q(z) = =15¢

singularity type

p(z) =0
singularity | type

=0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

3
x2y"+(x—l—l>y=0

Let the solution be represented as Frobenius power series of the form

normalized to be

00
y = E anxn+r
n=0

Then

(n+7)a,z"t

Me 1M

(n+r)(n+r—1)a,z"t 2

<
I

3
I
o

Substituting the above back into the ode gives

z? (i (n+r)(n+r—1) anx”“—?) + <x - Z) (i a,,x”“) =0 (1)

n=0

Which simplifies to

(Z " a,(n+71)(n+71— 1)) + (Z x”"”an) +> (— 3anin+r) =0 (24)

n=0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

0o
§ :L_1+n+ran — E an_lxn+r
n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + r.

(Z 2 an(n+7) (n 47— 1)) + <§; 12" ) Z ( 3a”xn+r) =0 (2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

3 " n+r
" a,(n+r)(n+r—1)— az =0
When n = 0 the above becomes
3 T
2 agr(—147r) — T _
Or -
(xTr(—l +7r)— z ) ap =0
Since ag # 0 then the above simplifies to
(472 — 4r — 3) "
=0
4
Since the above is true for all  then the indicial equation becomes
3
2
—r—2=0
rer—g
Solving for r gives the roots of the indicial equation as
L3
T2
1
ro — ——
272
Since ag # 0 then the indicial equation becomes
(4r? —4r —3)z" 0

4
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Solving for r gives the roots of the indicial equation as Since r; — ro = 2 is an integer,
then we can construct two linearly independent solutions

oo
=z E anx”
n=0

1:(2) = Cy(2) In (2) + 27 (Z "”””">

Or
yi(z) = 22 (Z an:v”>
n=0
i b,z™
y2(z) = Cyi(z) In (z) + ":i/i
Or
yi(z)=> anz™ts
n=0

y2(2) = Cyr(z) In (z (anx 2)

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. For 1 < n the recursive
equation is

3a,

an(n+r)(n+r—1)+an1—T:O (3)
Solving for a, from recursive equation (4) gives
= T2 1 8nr +ij§‘i dn —4r — 3 )
Which for the root r = 2 becomes
an = _% (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting

r= % and after as more terms are found using the above recursive equation.
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Qo 1 1

For n = 1, using the above recursive equation gives

4
@q=——
YT 42 4r—3
Which for the root r = % becomes
1
a; = —g
And the table now becomes
n | Gn, an
ao 1 1
4 1
Q| THrya—3 | T3

For n = 2, using the above recursive equation gives

16
(472 + 4r — 3) (472 + 12r +5)

a2

Which for the root r = % becomes

1
Ao = —
24
And the table now becomes
n | an
ap 1 1
4 1
01 | —Zoia4r—3 3
a 16 1
2 | (4r?44r—3)(4r2+12r+5) | 24

For n = 3, using the above recursive equation gives

64
(4r? +4r — 3) (472 + 12r 4 5) (4r2 4 20r + 21)

as =

Which for the root r = % becomes

1

% = 360
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And the table now becomes

n | Qpgr an
ap 1 1
4 1

01 | — gz +4r—3 —3
a 16 1

2 | (4r?234r—3)(4r2+12r+5) 24
as | — 64 1

3 (4r2+4r—3)(4r2+12r+5) (4r2+20r4-21) 360

For n = 4, using the above recursive equation gives

256
(4r2 + 4r — 3) (472 + 12r + 5) (472 + 207 + 21) (472 + 28r + 45)

ay, =

Which for the root r = % becomes

1
ay = ——
8640
And the table now becomes
n | Qpy an
Qo 1 1
4 1
1 | T &3 —3
a 16 1
2 | (@r2+4r—3)(4r2+12r+5) 24
as | — 64 1
3 (4r2+4r—3)(4r2+127+5) (4r2+207+21) 360
a 256 1
4 | (4r214r—3)(4r2+12r45)(4r2+20r+21) (4r2+28r+45) | 8640

For n = 5, using the above recursive equation gives

1024

T T A1) (2r 452 (2r + 3 (2r — 1) (2r +9) 2r + 72 (2r + 1)

Which for the root r = % becomes

1
302400

as =

And the table now becomes
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n | Gnr Qn,
ao 1 1
4 1
Y | T4 —3
a 16 1
2 | (4r?44r—3)(4r2+12r+5) 24
as | — 64 —_L
3 (4r2+4r—3)(4r2+12r+5) (4r2+20r+21) 360
a 256 1
4 | (@r2+4r—3)(4r2+12r+5) (4r2+20r+21) (4r2+28r+45) 8640
as | — 1024 1
5 (2r+11)(2r+5)2 (2r+3)% (2r—1)(2r+9) (2r+7) (2r+1) 302400

Using the above table, then the solution y; () is

v () = i (a0 + a1z + a2z® + aszz® + asz + asz’ + agz®. ..)
3 x z2 23 z* z°
= 2 1 _— - = _ O 6
v ( 321 360 " 640 302400 T O )>

Now the second solution y(z) is found. Let
M —T9 = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 2. Now we need to determine if
C is zero or not. This is done by finding lim, ., as(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

anN = Qg
B 16
(4r2 + 4r — 3) (4r2 4+ 12r + 5)
Therefore
lim 16 = lim 16
rory (4r2 +4r —3) (4r2 +12r +5) -1 (4r2 +4r —3) (4r2 4+ 12r 4+ 5)
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution

has the form
y2(z) = Cyr(z) In (z (Z bnz”Jm)

n=0
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Therefore

2 (@) = Coj(@) n ) + 1O ( o~ o™t + r2>>

T

z n=0
d’ , 2Cyi(z)  Cyi(z)
@yz(ﬂv) = Cyy(z)In(z) + 2
o bnxn-i-rz (’I’L + 7.2)2 bnxn—l-m (n + ,,-2)
+ Z ( 72 o 72
n=0

T T
n=0

=Cy/(z)In (z)+ 20m(=) _ C’ylz(x) + (i 22y () (=1 +n+ 7‘2))

Substituting these back into the given ode z?y” + (z — 2) y = 0 gives

x x?
o0 bnxn+r2 (n + ,,-2)2 bnwn+r2 (n + 7-2)
N
n=0

+ <x - Z) (Cyl (Z bnxn+r2>> -

Which can be written as

(st + (- 2) i e 422212 )

4 <i (bnacn“2 (n + 1) _ bpz™ 2 (n + rz)) ) (7)

2 2
X X
n=0

(a: - —) (Z bnm"m) 0

But since y;(z) is a solution to the ode, then

@)+ (2= F) mla) =0
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Eq (7) simplifes to

5 [ 2y (x) yl(a:) Nt bnoc’“”"z(n—i-rz)2 bzt (n + 1r3)
x< x z? )C_HU (Z< z? a z? >) (8)

D (Ere)-

Substituting y; = Z a,xz"™ into the above gives
n=0

(2 (i g (n 4y ) x — (i anz"+T1>) C
n=0 n=0

+ ( T2 (n 4+ 1) (=1 +n+ 7"2)) z? (9)
[e%9) 3 ( Z bnwn+r2>
n+ro _ n=0 —
+ (nz b,z ) 1 0
Since 7, = % and ro = —% then the above becomes

(Seten(a-1) (4 +;)) ; 10

n=0
o0 3 ( S bnx"—é)

+ <Z bnx"_%> z — —"=0 1 0
n=0

Which simplifies to

(Z Cw"+2an 2n + 3) ) Z < C’anz"+%> (2A)

=0

N (ix 2bn(4n4—8n+3 ) (Zm+"b ) i": (_31)”3:1—%) 0

n=0 n=0
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The next step is to make all powers of x be n — % in each summation term. Going

over each summation term above with power of z in it which is not already "3 and
adjusting the power and the corresponding index gives

Z C'x"+2an(2n + 3) = Z Can_2(2n _ 1) "3
n=0 n=2
i <—Canx"+%> p— i <_Can_2$n 2)
n =0 n=2
i m%-l—nbn — io: bn—ll’n_2
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers

of x are the same and equal to n — %

n=2

n =2
( 0 4" 5b,(4n? — 8n + 3)) (2B)
+ 4

n=0

+ S by 10 +i Bt =0
n=1 " n =0 4 -

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = 1, Eq (2B)
gives

—b1+b=0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
—b1+1=0

Solving the above for b; gives
by =1

For n = N, where N = 2 which is the difference between the two roots, we are free to
choose by = 0. Hence for n = 2, Eq (2B) gives

2C+1=0
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Which is solved for C. Solving for C' gives

1
C=-3

For n = 3, Eq (2B) gives
4CCL1 + bz + 3b3 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

2
3b3+§=0

Solving the above for b3 gives

For n = 4, Eq (2B) gives
GCCI,Q + b3 + 8b4 =0

Which when replacing the above values found already for b, and the values found earlier
for a,, and for C, gives

25
by — 2= =
8by = 0
Solving the above for by gives
b B
t7 576

For n =5, Eq (2B) gives
80&3 + b4 + 15b5 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

157
15b5 + % 0

Solving the above for b; gives
157

43200
Now that we found all b, and C, we can calculate the second solution from

y2(z) = Cys(x) In (z (Z bnz“+r2>

n=0

5

Using the above value found for C' = —% and all b,, then the second solution becomes

1/ s r 1z x3 zt z°
=——(z2(1-Z+ — - )
Y2() 5 (x ? < 3724 7360 T 8640 302400 (=) )) n (@)

3
4o 2 5 - B8 4 0

NG
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Therefore the homogeneous solution is

z) = a1y (x) + co1e()

3 r x> 3 x* x°
= 2 ([1—=2 4+ — — — — O(x8
( 3 360 T 8640 ~ 302400 T O )>
1 3 22 28 z* x°
“(25(1-24+2% - - 0(z% ) )1
( 2( ’ + 360 * 8640 302400 T O )>) a(z)
L 1hr— 5+ 5 - 5 +0@)
NZ7

Hence the final solution is

3 T T z? x?
—ezi(1-24% - O(a®
Clmz( 321 360 * 8640 302400 T O )>
X x 153 134
x2<1_§+ﬁ_%4’8640_302400"'0( )>ln(x)
2

1+ — 2% 4 B2 _ 108 4 O(s)

43200
N

Summary
The solution(s) found are the following

3 x z2 z* z®
= 2 1 - — - - _ 6
y=ar ( 321 360 T 8640 302200 T O )>

3 4

3 5
(1= 245 — 2+ 20— 52+ 0(%) ) In ()

9 (1)

2x 25z% 15725 6
tr6 — a3200 T O(2°)

NG
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Verification of solutions

= c1z? _E+x_2_ac_3+ a - z + O(z°)
v=a 3 24 360 8640 302400
3 x l‘z m?’ 134
x2(1_§+ﬁ_%+ﬁ soa0 + 0@ 6)> In (z)
te| —
2
14— 2 4 Bz _ 1512 O(gf)
N
Verified OK.

2.17.1 Maple step by step solution

Let’s solve
2y’ + (@ —¢)y=0
° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

Y= — (—344:2127)y

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y'+ = 34;395) =0
O Check to see if xg = 0 is a regular singular point
o Define functions
[Py(z) =0, P5(z) = =35]

o - Py(z)is analytic at z =0

@ R@)| =0
o x?- Py(z)is analytic at z = 0
(@ Pa))| =~

o z = (is a regular singular point
Check to see if xg = 0 is a regular singular point

$0=0
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Multiply by denominators
4z%y" + (-3 +4x)y=0

Assume series solution for y

oo
y = Z akz’“LT
k=0

Rewrite ODE with series expansions

Convert ™ - y to series expansion for m = 0..1

00
m . Y= Z akxk‘-l—r—l—m
k=0

Shift index using k— >k —m

o0
_ k
Ty = > ap_pxt"
k=m

Convert 2 - 4" to series expansion
(e e]

22y =Y ap(k+7)(k+r—1)zF
k=0

Rewrite ODE with series expansions

ao(1+2r) (=3 +2r) 2" + (i (ak(2k + 2r + 1) (2k + 2r — 3) + 4ay_,) xk+r) —0
k=1

apcannot be 0 by assumption, giving the indicial equation
(14+2r)(—3+4+2r)=0

Values of r that satisfy the indicial equation

re{-13

Each term in the series must be 0, giving the recursion relation
4k+r+3) (k+r—2)ar+4a,_1 =0

Shift index using k— >k + 1

4k+3+7) (k=147)ap +4ar =0

Recursion relation that defines series solution to ODE

a _ 4ag
k+1 = 7 (2k+3+2r)(2k—1+2r)
Recursion relation for r = —%
- _ dag
Ak+1 = ~ (2k12)(26—2)
Series not valid for r = —% , division by 0 in the recursion relation at k = 1
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4ak

T+l =~ @Et2)(2F-2)
° Recursion relation for r = 3
A+l = = GEro) R 7D
. Solution for r = 3
_ 3 k+2 _ dag,
y=2 o™, 0 = g (e

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionmns:
-> Bessel
<- Bessel successful

<- special function solution successful”

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 65

‘Order:=6; ‘
Ldsolve(x“2*diff(y(x),x$2)+(x-3/4)*y(x)=0,y(x),type='series',x=0); J
y(x)

_ar®(1— 30+ 5;2% — 3557° + 557" — st + 0 (2°%)) + co(In (2) (22 — 32° 4 552 — 5552° + O (&

360
NZ7
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v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 101

-

kAsymptoticDSolveValue [x~2xy' ' [x]+(x-3/4)*y[x]==0,y[x],{x,0,5}]

—

y(z)
(xn/z 292 T2 52
— Cy

8640 360 | 24 3
4 3 2
576/ 48

(z* — 8z +24) log(x))
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2.18 problem 7.3.104 (d)
2.18.1 Maple step by step solution . . . . . ... ... ... ......

Internal problem ID [5532]
Internal file name [OUTPUT/4780_Sunday_June_05_2022_03_05_44_PM_5666023/index . tex]

Book: Notes on Diffy Qs. Differential Equations for Engineers. By by Jiri Lebl, 2013.
Section: Chapter 7. POWER SERIES METHODS. 7.3.2 The method of Frobenius. Exer-
cises. page 300

Problem number: 7.3.104 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

l,2y//_xy/+y =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
m2yll —iEy/-l—y — 0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where

319



Table 36: Table p(x), g(z) singularites.

p(z) = —; q(z) = 2
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, o0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
m2yll _xy/+y — 0

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

z2 (Z (m+r)(n+r—1) anxn+r—2> — (Z (n+7) anxn—i-r—l) + (Z anxn—i-r) —0

n=0 n=0

Which simplifies to

o0

(Z 2" an(n+1) (n+r— 1)) + Z (=z™Tap(n+7)) + (Z ana:n+r> =0 (24)

n =0
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The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of = are the same and equal
ton—+r.

(Z e an(n471) (n+r— 1)) + 3 (—e™an(n+ 1)) + (Z anxmrr) =0 (2B)
n=0 n =0 n=0
The indicial equation is obtained from n = 0. From Eq (2B) this gives
" a,(n+r)(n+r—1)—2""a,(n+7) +a, 2"t =0
When n = 0 the above becomes
z"agr(—1+4r) — z"aer + apxr” =0

Or
("r(=14+7r)—2"r+2")ay=0

Since ag # 0 then the above simplifies to
(-14+7)2" =0
Since the above is true for all x then the indicial equation becomes
(=1+7)>=0
Solving for r gives the roots of the indicial equation as

’l"1=1

To = 1
Since ag # 0 then the indicial equation becomes
(=1+7)22"=0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(z) = Z anx™t" (1A)
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Now the second solution ¥, is found using

yo(z) = y1(x) In (x) + (Z bnx"”) (1B)
n=1
Then the general solution will be

y = () + coya(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ag is never zero, and is
arbitrary and is typically taken as ap = 1, and {ci, co} are two arbitray constants of
integration which can be found from initial conditions. Using the value of the indicial
root found earlier, r = 1, Eqs (1A,1B) become

00
y1($) — Z anxn+1
n=0

Y2(7) = y1 () In (z) + <Z bn:c”"'1>

We start by finding the first solution y;(z). Eq (2B) derived above is now used to find
all a,, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. ag is arbitrary and taken as ag = 1. For 0 < n the recursive equation
is

a,(n+r)(n+r—1)—a,(n+7r)+a, =0 (3)

Solving for a,, from recursive equation (4) gives
a, =0 (4)

Which for the root r = 1 becomes
a, =0 (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n | Gny | Gy

Qo 1 1

For n =1, using the above recursive equation gives

a1=0
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And the table now becomes

Qo 1 1
ai 0 0

For n = 2, using the above recursive equation gives
QAo = 0

And the table now becomes

n | QGuy | Gn
Qo 1 1
a1

a2

For n = 3, using the above recursive equation gives
as = 0

And the table now becomes

n | Gnr | Gn
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0

For n = 4, using the above recursive equation gives
ay = 0

And the table now becomes
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n | Gnr | Gn
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0
as | O 0

For n = 5, using the above recursive equation gives
as = 0

And the table now becomes

n | Gny | Gy
ap | 1 1
a; | 0 0
ay | 0 0
as | 0 0
as | O 0
as | 0 0

Using the above table, then the first solution y; (z) is

yi(z) = x(ao + a1z + asx® + asx® + agz + a5z’ + agxb. .. )

= 2(1+0("))

Now the second solution is found. The second solution is given by

Where b, is found using

And the above is then evaluated at »r = 1. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table
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n | by | Gn | by = %am b,(r=1)
bo | 1 1 | N/A since b, starts from 1 | N/A

by | O 0 [0 0

by | O 0 [0 0

bs | 0 0 [0 0

by | O 0 [0 0

bs | O 0 [0 0

The above table gives all values of b, needed. Hence the second solution is

y2(z) = y1(z) In () + by + b1x + box® + b3x® + byz* + bsz® + be2®. ..
=z(1+0(z°%)) In(z) + z0(z°)

Therefore the homogeneous solution is

Yr(z) = c191(x) + coya()
— a2(1+0()) + (a1 + O(=)) In (2) + 20(a")

Hence the final solution is
Y=1Yn
= clx(l + O(x6)) + 02(33(1 + O(a:6)) In(x) + 330(3:6))

Summary
The solution(s) found are the following

y=cz(l4+0(2%)) + 2 (z(1 4 O(2°)) In (z) + z0(z°))
Verification of solutions

y=caz(1+0(2%) + ¢ (z(1+ 0(z)) In (2) + 20 (a°))

Verified OK.
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2.18.1 Maple step by step solution

Let’s solve

m2y"—xy’+y= 0

° Highest derivative means the order of the ODE is 2

7

Yy
° Isolate 2nd derivative

T

/
N __ Y Yy
Yy z 2

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y' L+ % =0

T

° Multiply by denominators of the ODE
2,1

2y —zy +y=0
° Make a change of variables
t=1In(z)
O Substitute the change of variables back into the ODE
o Calculate the 1st derivative of y with respect to x , using the chain rule
y = (4y()t'(z)

o Compute derivative

y/ _ %y(t)

o Calculate the 2nd derivative of y with respect to x , using the chain rule
v = (Gy®) ¢ +1'() (2y(®))

o Compute derivative

d2 d
" __ my(t) _ Ey(t)
- x? x2

Substitute the change of variables back into the ODE

o #2v®) _ v\ _ 4
p| A — e ) — Sy(t) +y(t) =0

° Simplify
() = 25y(t) +y(t) =0

° Characteristic polynomial of ODE
r—2r+1=0
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° Factor the characteristic polynomial

(r—1)%=0
° Root of the characteristic polynomial
r=1
° 1st solution of the ODE
n(t) =€
° Repeated root, multiply y;(¢) by ¢ to ensure linear independence
ya(t) =te’
° General solution of the ODE
y(t) = a1y () + caya(t)
° Substitute in solutions

y(t) = 1€’ + cot €

o Change variables back using ¢ = In ()
y=cyln(x)z+ c1x

° Simplify
y=1z(c; + c21In (z))

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful~

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

s

Order:=6;
‘dsolve(x‘2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

y(z) = z(c2In (z) + ¢1) + O(=?)
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v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 14

kAsymptoticDSolveValue [x~2xy' ' [x]-x*xy' [x]+y[x]==0,y[x],{x,0,5}]

y(x) = a1z + cox log(x)
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