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1.1 problem 1
1.1.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 4

Internal problem ID [5075]
Internal file name [OUTPUT/4568_Sunday_June_05_2022_03_01_02_PM_43400769/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

xy′ = x2 + 2x− 3

1.1.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

x2 + 2x− 3
x

dx

= x2

2 + 2x− 3 ln (x) + c1

Summary
The solution(s) found are the following

(1)y = x2

2 + 2x− 3 ln (x) + c1
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Figure 1: Slope field plot

Verification of solutions

y = x2

2 + 2x− 3 ln (x) + c1

Verified OK.

1.1.2 Maple step by step solution

Let’s solve
xy′ = x2 + 2x− 3

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = x2+2x−3

x

• Integrate both sides with respect to x∫
y′dx =

∫
x2+2x−3

x
dx+ c1

• Evaluate integral
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y = x2

2 + 2x− 3 ln (x) + c1

• Solve for y
y = x2

2 + 2x− 3 ln (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*diff(y(x),x)=x^2+2*x-3,y(x), singsol=all)� �

y(x) = x2

2 + 2x− 3 ln (x) + c1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 22� �
DSolve[x*y'[x]==x^2+2*x-3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

2 + 2x− 3 log(x) + c1
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1.2 problem 2
1.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 8
1.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 18

Internal problem ID [5076]
Internal file name [OUTPUT/4569_Sunday_June_05_2022_03_01_03_PM_13062409/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(x+ 1)2 y′ − y2 = 1

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y2 + 1
(x+ 1)2

Where f(x) = 1
(x+1)2 and g(y) = y2 + 1. Integrating both sides gives

1
y2 + 1 dy = 1

(x+ 1)2
dx
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∫ 1
y2 + 1 dy =

∫ 1
(x+ 1)2

dx

arctan (y) = − 1
x+ 1 + c1

Which results in

y = tan
(
c1x+ c1 − 1

x+ 1

)
Summary
The solution(s) found are the following

(1)y = tan
(
c1x+ c1 − 1

x+ 1

)

Figure 2: Slope field plot

Verification of solutions

y = tan
(
c1x+ c1 − 1

x+ 1

)
Verified OK.
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1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2 + 1
(x+ 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 2: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = (x+ 1)2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

(x+ 1)2
dx

Which results in

S = − 1
x+ 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2 + 1
(x+ 1)2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
(x+ 1)2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
x+ 1 = arctan (y) + c1

Which simplifies to

− 1
x+ 1 = arctan (y) + c1

Which gives

y = − tan
(
c1x+ c1 + 1

x+ 1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2+1
(x+1)2

dS
dR

= 1
R2+1

R = y

S = − 1
x+ 1

Summary
The solution(s) found are the following

(1)y = − tan
(
c1x+ c1 + 1

x+ 1

)
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Figure 3: Slope field plot

Verification of solutions

y = − tan
(
c1x+ c1 + 1

x+ 1

)
Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y2 + 1

)
dy =

(
1

(x+ 1)2
)
dx(

− 1
(x+ 1)2

)
dx+

(
1

y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
(x+ 1)2

N(x, y) = 1
y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
(x+ 1)2

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
(x+ 1)2

dx

(3)φ = 1
x+ 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2+1 . Therefore equation (4) becomes

(5)1
y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y2 + 1

)
dy

f(y) = arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
x+ 1 + arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1

x+ 1 + arctan (y)

The solution becomes

y = tan
(
c1x+ c1 − 1

x+ 1

)

Summary
The solution(s) found are the following

(1)y = tan
(
c1x+ c1 − 1

x+ 1

)

Figure 4: Slope field plot
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Verification of solutions

y = tan
(
c1x+ c1 − 1

x+ 1

)
Verified OK.

1.2.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y2 + 1
(x+ 1)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2

(x+ 1)2
+ 1

(x+ 1)2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
(x+1)2 , f1(x) = 0 and f2(x) = 1

(x+1)2 . Let

y = −u′

f2u

= −u′

u
(x+1)2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 2

(x+ 1)3

f1f2 = 0

f 2
2 f0 =

1
(x+ 1)6
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Substituting the above terms back in equation (2) gives

u′′(x)
(x+ 1)2

+ 2u′(x)
(x+ 1)3

+ u(x)
(x+ 1)6

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(

1
x+ 1

)
+ c2 cos

(
1

x+ 1

)

The above shows that

u′(x) =
−c1 cos

( 1
x+1

)
+ c2 sin

( 1
x+1

)
(x+ 1)2

Using the above in (1) gives the solution

y = −
−c1 cos

( 1
x+1

)
+ c2 sin

( 1
x+1

)
c1 sin

( 1
x+1

)
+ c2 cos

( 1
x+1

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
c3 cos

( 1
x+1

)
− sin

( 1
x+1

)
c3 sin

( 1
x+1

)
+ cos

( 1
x+1

)
Summary
The solution(s) found are the following

(1)y =
c3 cos

( 1
x+1

)
− sin

( 1
x+1

)
c3 sin

( 1
x+1

)
+ cos

( 1
x+1

)
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Figure 5: Slope field plot

Verification of solutions

y =
c3 cos

( 1
x+1

)
− sin

( 1
x+1

)
c3 sin

( 1
x+1

)
+ cos

( 1
x+1

)
Verified OK.

1.2.5 Maple step by step solution

Let’s solve
(x+ 1)2 y′ − y2 = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= 1

(x+1)2

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫ 1
(x+1)2dx+ c1
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• Evaluate integral
arctan (y) = − 1

x+1 + c1

• Solve for y
y = tan

(
c1x+c1−1

x+1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
dsolve((1+x)^2*diff(y(x),x)=1+y(x)^2,y(x), singsol=all)� �

y(x) = tan
(
−1 + c1(x+ 1)

x+ 1

)
3 Solution by Mathematica
Time used: 0.264 (sec). Leaf size: 32� �
DSolve[(1+x)^2*y'[x]==1+y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − tan
(

1
x+ 1 − c1

)
y(x) → −i
y(x) → i
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1.3 problem 3
1.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 22
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 30

Internal problem ID [5077]
Internal file name [OUTPUT/4570_Sunday_June_05_2022_03_01_04_PM_96237136/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ + 2y = e3x

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
q(x) = e3x

Hence the ode is

y′ + 2y = e3x
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The integrating factor µ is

µ = e
∫
2dx

= e2x

The ode becomes

d
dx(µy) = (µ)

(
e3x
)

d
dx
(
e2xy

)
=
(
e2x
) (

e3x
)

d
(
e2xy

)
= e5x dx

Integrating gives

e2xy =
∫

e5x dx

e2xy = e5x
5 + c1

Dividing both sides by the integrating factor µ = e2x results in

y = e−2xe5x
5 + c1e−2x

which simplifies to

y = (e5x + 5c1) e−2x

5

Summary
The solution(s) found are the following

(1)y = (e5x + 5c1) e−2x

5
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Figure 6: Slope field plot

Verification of solutions

y = (e5x + 5c1) e−2x

5

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y + e3x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−2xdy

Which results in

S = e2xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y + e3x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2 e2xy
Sy = e2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e5x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e5R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e5R
5 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e2xy = e5x
5 + c1

Which simplifies to

e2xy = e5x
5 + c1

Which gives

y = (e5x + 5c1) e−2x

5
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y + e3x dS
dR

= e5R

R = x

S = e2xy

Summary
The solution(s) found are the following

(1)y = (e5x + 5c1) e−2x

5
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Figure 7: Slope field plot

Verification of solutions

y = (e5x + 5c1) e−2x

5

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2y + e3x

)
dx(

2y − e3x
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y − e3x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y − e3x

)
= 2

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2)− (0))
= 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 dx

The result of integrating gives

µ = e2x

= e2x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e2x
(
2y − e3x

)
=
(
2y − e3x

)
e2x

And

N = µN

= e2x(1)
= e2x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

2y − e3x
)
e2x
)
+
(
e2x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
2y − e3x

)
e2x dx

(3)φ = −e5x
5 + e2xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e2x + f ′(y)

But equation (2) says that ∂φ
∂y

= e2x. Therefore equation (4) becomes

(5)e2x = e2x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −e5x
5 + e2xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e5x
5 + e2xy

The solution becomes

y = (e5x + 5c1) e−2x

5
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Summary
The solution(s) found are the following

(1)y = (e5x + 5c1) e−2x

5

Figure 8: Slope field plot

Verification of solutions

y = (e5x + 5c1) e−2x

5

Verified OK.

1.3.4 Maple step by step solution

Let’s solve
y′ + 2y = e3x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −2y + e3x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y = e3x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + 2y) = µ(x) e3x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 2y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

• Solve to find the integrating factor
µ(x) = e2x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) e3xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) e3xdx+ c1

• Solve for y

y =
∫
µ(x)e3xdx+c1

µ(x)

• Substitute µ(x) = e2x

y =
∫
e3xe2xdx+c1

e2x

• Evaluate the integrals on the rhs

y =
e5x
5 +c1
e2x

• Simplify

y =
(
e5x+5c1

)
e−2x

5
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x)+2*y(x)=exp(3*x),y(x), singsol=all)� �

y(x) = (e5x + 5c1) e−2x

5

3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 23� �
DSolve[y'[x]+2*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e3x

5 + c1e
−2x
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1.4 problem 4
1.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 35
1.4.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 36
1.4.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 40
1.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 45

Internal problem ID [5078]
Internal file name [OUTPUT/4571_Sunday_June_05_2022_03_01_05_PM_98104833/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

−y + xy′ = x2

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x

Hence the ode is

y′ − y

x
= x
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (x)

d
dx

(y
x

)
=
(
1
x

)
(x)

d
(y
x

)
= dx

Integrating gives

y

x
=
∫

dx
y

x
= x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x+ x2

which simplifies to

y = x(x+ c1)

Summary
The solution(s) found are the following

(1)y = x(x+ c1)
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Figure 9: Slope field plot

Verification of solutions

y = x(x+ c1)

Verified OK.

1.4.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)x+ x(u′(x)x+ u(x)) = x2

Integrating both sides gives

u(x) =
∫

1 dx

= c2 + x

Therefore the solution y is

y = ux

= x(c2 + x)
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Summary
The solution(s) found are the following

(1)y = x(c2 + x)

Figure 10: Slope field plot

Verification of solutions

y = x(c2 + x)

Verified OK.

1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

36



The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= x+ c1

Which simplifies to
y

x
= x+ c1

Which gives

y = x(x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+y
x

dS
dR

= 1

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = x(x+ c1)
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Figure 11: Slope field plot

Verification of solutions

y = x(x+ c1)

Verified OK.

1.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x2 + y

)
dx(

−x2 − y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 − y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x2 − y

)
= −1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−1)− (1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−x2 − y

)
= −x2 − y

x2

And

N = µN

= 1
x2 (x)

= 1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x2 − y

x2

)
+
(
1
x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 − y

x2 dx

(3)φ = −x+ y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x
. Therefore equation (4) becomes

(5)1
x
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ y

x
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The solution becomes
y = x(x+ c1)

Summary
The solution(s) found are the following

(1)y = x(x+ c1)

Figure 12: Slope field plot

Verification of solutions

y = x(x+ c1)

Verified OK.
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1.4.5 Maple step by step solution

Let’s solve
−y + xy′ = x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

1dx+ c1
)

• Evaluate the integrals on the rhs
y = x(x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(x*diff(y(x),x)-y(x)=x^2,y(x), singsol=all)� �

y(x) = (x+ c1)x

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 11� �
DSolve[x*y'[x]-y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x+ c1)
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1.5 problem 5
1.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 47
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 48

Internal problem ID [5079]
Internal file name [OUTPUT/4572_Sunday_June_05_2022_03_01_06_PM_7648630/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x2y′ = x3 sin (3x) + 4

1.5.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

x3 sin (3x) + 4
x2 dx

= sin (3x)
9 − x cos (3x)

3 − 4
x
+ c1

Summary
The solution(s) found are the following

(1)y = sin (3x)
9 − x cos (3x)

3 − 4
x
+ c1
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Figure 13: Slope field plot

Verification of solutions

y = sin (3x)
9 − x cos (3x)

3 − 4
x
+ c1

Verified OK.

1.5.2 Maple step by step solution

Let’s solve
x2y′ = x3 sin (3x) + 4

• Highest derivative means the order of the ODE is 1
y′

• Separate variables

y′ = x3 sin(3x)+4
x2

• Integrate both sides with respect to x∫
y′dx =

∫ x3 sin(3x)+4
x2 dx+ c1

• Evaluate integral
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y = sin(3x)
9 − x cos(3x)

3 − 4
x
+ c1

• Solve for y

y = −3x2 cos(3x)+x sin(3x)+9c1x−36
9x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(x^2*diff(y(x),x)=x^3*sin(3*x)+4,y(x), singsol=all)� �

y(x) = sin (3x)
9 − x cos (3x)

3 − 4
x
+ c1

3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 30� �
DSolve[x^2*y'[x]==x^3*Sin[3*x]+4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4
x
+ 1

9 sin(3x)− 1
3x cos(3x) + c1
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1.6 problem 6
1.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 50
1.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 52
1.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 56
1.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 60

Internal problem ID [5080]
Internal file name [OUTPUT/4573_Sunday_June_05_2022_03_01_07_PM_98484249/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x cos (y) y′ − sin (y) = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= tan (y)
x

Where f(x) = 1
x
and g(y) = tan (y). Integrating both sides gives

1
tan (y) dy = 1

x
dx∫ 1

tan (y) dy =
∫ 1

x
dx

ln (sin (y)) = ln (x) + c1
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Raising both side to exponential gives

sin (y) = eln(x)+c1

Which simplifies to

sin (y) = c2x

Summary
The solution(s) found are the following

(1)y = arcsin (c2x ec1)

Figure 14: Slope field plot

Verification of solutions

y = arcsin (c2x ec1)

Verified OK.
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1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (y)
x cos (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 12: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (y)
x cos (y)
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cot (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = ln (sin (y)) + c1

Which simplifies to

ln (x) = ln (sin (y)) + c1

Which gives

y = arcsin
(
x e−c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(y)
x cos(y)

dS
dR

= cot (R)

R = y

S = ln (x)

Summary
The solution(s) found are the following

(1)y = arcsin
(
x e−c1

)
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Figure 15: Slope field plot

Verification of solutions

y = arcsin
(
x e−c1

)
Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
cos (y)
sin (y)

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
cos (y)
sin (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = cos (y)
sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And

∂N

∂x
= ∂

∂x

(
cos (y)
sin (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= cos(y)
sin(y) . Therefore equation (4) becomes

(5)cos (y)
sin (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = cos (y)
sin (y)

= cot (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(cot (y)) dy

f(y) = ln (sin (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (sin (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (sin (y))

Summary
The solution(s) found are the following

(1)− ln (x) + ln (sin (y)) = c1

Figure 16: Slope field plot
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Verification of solutions

− ln (x) + ln (sin (y)) = c1

Verified OK.

1.6.4 Maple step by step solution

Let’s solve
x cos (y) y′ − sin (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ cos(y)
sin(y) = 1

x

• Integrate both sides with respect to x∫ y′ cos(y)
sin(y) dx =

∫ 1
x
dx+ c1

• Evaluate integral
ln (sin (y)) = ln (x) + c1

• Solve for y
y = arcsin (x ec1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 8� �
dsolve(x*cos(y(x))*diff(y(x),x)-sin(y(x))=0,y(x), singsol=all)� �

y(x) = arcsin (c1x)

3 Solution by Mathematica
Time used: 9.024 (sec). Leaf size: 17� �
DSolve[x*Cos[y[x]]*y'[x]-Sin[y[x]]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arcsin (ec1x)
y(x) → 0
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1.7 problem 7
1.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 62
1.7.2 Solving as first order ode lie symmetry calculated ode . . . . . . 64

Internal problem ID [5081]
Internal file name [OUTPUT/4574_Sunday_June_05_2022_03_01_07_PM_69471112/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x3 + xy2

)
y′ − 2y3 = 0

1.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x3 + x3u(x)2

)
(u′(x)x+ u(x))− 2u(x)3 x3 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u3 − u

x (u2 + 1)

Where f(x) = 1
x
and g(u) = u3−u

u2+1 . Integrating both sides gives

1
u3−u
u2+1

du = 1
x
dx
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∫ 1
u3−u
u2+1

du =
∫ 1

x
dx

ln (u+ 1) + ln (u− 1)− ln (u) = ln (x) + c2

Raising both side to exponential gives

eln(u+1)+ln(u−1)−ln(u) = eln(x)+c2

Which simplifies to

u2 − 1
u

= c3x

The solution is
u(x)2 − 1
u (x) = c3x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

x
(

y2

x2 − 1
)

y
= c3x

y2 − x2

xy
= c3x

Summary
The solution(s) found are the following

(1)y2 − x2

xy
= c3x
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Figure 17: Slope field plot

Verification of solutions

y2 − x2

xy
= c3x

Verified OK.

1.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y3
x (x2 + y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
2y3(b3 − a2)
x (x2 + y2) − 4y6a3

x2 (x2 + y2)2

−
(
− 2y3
x2 (x2 + y2) −

4y3

(x2 + y2)2
)
(xa2 + ya3 + a1)

−
(

6y2
x (x2 + y2) −

4y4

x (x2 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x6b2 − 4x4y2b2 + 4x3y3a2 − 4x3y3b3 + 6x2y4a3 − x2y4b2 − 2y6a3 − 6x3y2b1 + 6x2y3a1 − 2x y4b1 + 2y5a1
x2 (x2 + y2)2

= 0

Setting the numerator to zero gives

(6E)x6b2 − 4x4y2b2 + 4x3y3a2 − 4x3y3b3 + 6x2y4a3 − x2y4b2
− 2y6a3 − 6x3y2b1 + 6x2y3a1 − 2x y4b1 + 2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v31v32 + 6a3v21v42 − 2a3v62 + b2v
6
1 − 4b2v41v22 − b2v

2
1v

4
2

− 4b3v31v32 + 6a1v21v32 + 2a1v52 − 6b1v31v22 − 2b1v1v42 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1 − 4b2v41v22 + (4a2 − 4b3) v31v32 − 6b1v31v22

+ (6a3 − b2) v21v42 + 6a1v21v32 − 2b1v1v42 − 2a3v62 + 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
2a1 = 0
6a1 = 0

−2a3 = 0
−6b1 = 0
−2b1 = 0
−4b2 = 0

4a2 − 4b3 = 0
6a3 − b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

2y3
x (x2 + y2)

)
(x)

= y x2 − y3

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y x2−y3

x2+y2

dy

Which results in

S = − ln (x+ y) + ln (y)− ln (−x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y3
x (x2 + y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
x2 − y2

Sy = − 1
x+ y

+ 1
y
+ 1

x− y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x+ y) + ln (y)− ln (−x+ y) = −2 ln (x) + c1

Which simplifies to

− ln (x+ y) + ln (y)− ln (−x+ y) = −2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y3
x(x2+y2)

dS
dR

= − 2
R

R = x

S = − ln (x+ y) + ln (y)− ln (−x+ y)

Summary
The solution(s) found are the following

(1)− ln (x+ y) + ln (y)− ln (−x+ y) = −2 ln (x) + c1
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Figure 18: Slope field plot

Verification of solutions

− ln (x+ y) + ln (y)− ln (−x+ y) = −2 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 44� �
dsolve((x^3+x*y(x)^2)*diff(y(x),x)=2*y(x)^3,y(x), singsol=all)� �

y(x) = −

(
−c1x+

√
c21x

2 + 4
)
x

2

y(x) =

(
c1x+

√
c21x

2 + 4
)
x

2

3 Solution by Mathematica
Time used: 1.2 (sec). Leaf size: 83� �
DSolve[(x^3+x*y[x]^2)*y'[x]==2*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
2x
(√

4 + e2c1x2 + ec1x
)

y(x) → 1
2x
(√

4 + e2c1x2 − ec1x
)

y(x) → 0
y(x) → −x
y(x) → x
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1.8 problem 8
1.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 72
1.8.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 74
1.8.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 76
1.8.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 77
1.8.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 81
1.8.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 85

Internal problem ID [5082]
Internal file name [OUTPUT/4575_Sunday_June_05_2022_03_01_10_PM_58866648/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 − 1

)
y′ + 2xy = x

1.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(−2y + 1)
x2 − 1

Where f(x) = x
x2−1 and g(y) = −2y + 1. Integrating both sides gives

1
−2y + 1 dy = x

x2 − 1 dx
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∫ 1
−2y + 1 dy =

∫
x

x2 − 1 dx

− ln (−2y + 1)
2 = ln (x− 1)

2 + ln (x+ 1)
2 + c1

Raising both side to exponential gives
1√

−2y + 1
= e

ln(x−1)
2 + ln(x+1)

2 +c1

Which simplifies to
1√

−2y + 1
= c2e

ln(x−1)
2 + ln(x+1)

2

Which simplifies to

y = (c22(x− 1) (x+ 1) e2c1 − 1) e−2c1

2c22 (x− 1) (x+ 1)

Summary
The solution(s) found are the following

(1)y = (c22(x− 1) (x+ 1) e2c1 − 1) e−2c1

2c22 (x− 1) (x+ 1)

Figure 19: Slope field plot
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Verification of solutions

y = (c22(x− 1) (x+ 1) e2c1 − 1) e−2c1

2c22 (x− 1) (x+ 1)

Verified OK.

1.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 − 1

q(x) = x

x2 − 1
Hence the ode is

y′ + 2xy
x2 − 1 = x

x2 − 1
The integrating factor µ is

µ = e
∫ 2x

x2−1dx

= eln(x−1)+ln(x+1)

Which simplifies to
µ = x2 − 1

The ode becomes

d
dx(µy) = (µ)

(
x

x2 − 1

)
d
dx
((
x2 − 1

)
y
)
=
(
x2 − 1

)( x

x2 − 1

)
d
((
x2 − 1

)
y
)
= x dx

Integrating gives (
x2 − 1

)
y =

∫
x dx(

x2 − 1
)
y = x2

2 + c1
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Dividing both sides by the integrating factor µ = x2 − 1 results in

y = x2

2x2 − 2 + c1
x2 − 1

which simplifies to

y = x2 + 2c1
2x2 − 2

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2x2 − 2

Figure 20: Slope field plot

Verification of solutions

y = x2 + 2c1
2x2 − 2

Verified OK.
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1.8.3 Solving as differentialType ode

Writing the ode as

y′ = −2xy + x

x2 − 1 (1)

Which becomes

0 =
(
−x2 + 1

)
dy + (−x(2y − 1)) dx (2)

But the RHS is complete differential because

(
−x2 + 1

)
dy + (−x(2y − 1)) dx = d

(
−x2(2y − 1)

2 + y

)
Hence (2) becomes

0 = d

(
−x2(2y − 1)

2 + y

)
Integrating both sides gives gives these solutions

y = x2 + 2c1
2x2 − 2 + c1

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2x2 − 2 + c1
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Figure 21: Slope field plot

Verification of solutions

y = x2 + 2c1
2x2 − 2 + c1

Verified OK.

1.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x(2y − 1)
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 15: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e− ln(x−1)−ln(x+1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e− ln(x−1)−ln(x+1)dy

Which results in

S = (x− 1) (x+ 1) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x(2y − 1)
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 − 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx2 − y = x2

2 + c1

Which simplifies to

yx2 − y = x2

2 + c1

Which gives

y = x2 + 2c1
2x2 − 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x(2y−1)
x2−1

dS
dR

= R

R = x

S = y x2 − y

Summary
The solution(s) found are the following

(1)y = x2 + 2c1
2x2 − 2
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Figure 22: Slope field plot

Verification of solutions

y = x2 + 2c1
2x2 − 2

Verified OK.

1.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−2y + 1

)
dy =

(
x

x2 − 1

)
dx(

− x

x2 − 1

)
dx+

(
1

−2y + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 − 1
N(x, y) = 1

−2y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− x

x2 − 1

)
= 0
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And

∂N

∂x
= ∂

∂x

(
1

−2y + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 − 1 dx

(3)φ = − ln (x− 1)
2 − ln (x+ 1)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−2y+1 . Therefore equation (4) becomes

(5)1
−2y + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
2y − 1
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
2y − 1

)
dy

f(y) = − ln (2y − 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1)
2 − ln (x+ 1)

2 − ln (2y − 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1)
2 − ln (x+ 1)

2 − ln (2y − 1)
2

The solution becomes

y = x2 + e−2c1 − 1
2x2 − 2

Summary
The solution(s) found are the following

(1)y = x2 + e−2c1 − 1
2x2 − 2
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Figure 23: Slope field plot

Verification of solutions

y = x2 + e−2c1 − 1
2x2 − 2

Verified OK.

1.8.6 Maple step by step solution

Let’s solve
(x2 − 1) y′ + 2xy = x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
((x2 − 1) y′ + 2xy) dx =

∫
xdx+ c1

• Evaluate integral
(x2 − 1) y = x2

2 + c1

• Solve for y
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y = x2+2c1
2(x2−1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve((x^2-1)*diff(y(x),x)+2*x*y(x)=x,y(x), singsol=all)� �

y(x) = x2 + 2c1
2x2 − 2

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 31� �
DSolve[(x^2-1)*y'[x]+2*x*y[x]==x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 2c1
2 (x2 − 1)

y(x) → 1
2
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1.9 problem 9
1.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 87
1.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 89
1.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 93
1.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 97

Internal problem ID [5083]
Internal file name [OUTPUT/4576_Sunday_June_05_2022_03_01_11_PM_93920876/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y tanh (x) = 2 sinh (x)

1.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tanh (x)
q(x) = 2 sinh (x)

Hence the ode is

y′ + y tanh (x) = 2 sinh (x)
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The integrating factor µ is

µ = e
∫
tanh(x)dx

= cosh (x)

The ode becomes

d
dx(µy) = (µ) (2 sinh (x))

d
dx(cosh (x) y) = (cosh (x)) (2 sinh (x))

d(cosh (x) y) = sinh (2x) dx

Integrating gives

cosh (x) y =
∫

sinh (2x) dx

cosh (x) y = cosh (2x)
2 + c1

Dividing both sides by the integrating factor µ = cosh (x) results in

y = sech (x) cosh (2x)
2 + c1 sech (x)

which simplifies to

y =
(
cosh (x)2 − 1

2 + c1

)
sech (x)

Summary
The solution(s) found are the following

(1)y =
(
cosh (x)2 − 1

2 + c1

)
sech (x)
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Figure 24: Slope field plot

Verification of solutions

y =
(
cosh (x)2 − 1

2 + c1

)
sech (x)

Verified OK.

1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y tanh (x) + 2 sinh (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 18: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cosh (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cosh(x)

dy

Which results in

S = cosh (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y tanh (x) + 2 sinh (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = sinh (x) y
Sy = cosh (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sinh (2x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sinh (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cosh (2R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y cosh (x) = cosh (2x)
2 + c1

Which simplifies to

y cosh (x) = cosh (2x)
2 + c1

Which gives

y = cosh (2x) + 2c1
2 cosh (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y tanh (x) + 2 sinh (x) dS
dR

= sinh (2R)

R = x

S = cosh (x) y

Summary
The solution(s) found are the following

(1)y = cosh (2x) + 2c1
2 cosh (x)
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Figure 25: Slope field plot

Verification of solutions

y = cosh (2x) + 2c1
2 cosh (x)

Verified OK.

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y tanh (x) + 2 sinh (x)) dx
(y tanh (x)− 2 sinh (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y tanh (x)− 2 sinh (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y tanh (x)− 2 sinh (x))

= tanh (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((tanh (x))− (0))
= tanh (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫
tanh(x) dx

The result of integrating gives

µ = eln(cosh(x))

= cosh (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cosh (x) (y tanh (x)− 2 sinh (x))
= sinh (x) (−2 cosh (x) + y)

And

N = µN

= cosh (x) (1)
= cosh (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(sinh (x) (−2 cosh (x) + y)) + (cosh (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sinh (x) (−2 cosh (x) + y) dx

(3)φ = cosh (x) (− cosh (x) + y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cosh (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cosh (x). Therefore equation (4) becomes

(5)cosh (x) = cosh (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = cosh (x) (− cosh (x) + y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = cosh (x) (− cosh (x) + y)

The solution becomes

y = cosh (x)2 + c1
cosh (x)
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Summary
The solution(s) found are the following

(1)y = cosh (x)2 + c1
cosh (x)

Figure 26: Slope field plot

Verification of solutions

y = cosh (x)2 + c1
cosh (x)

Verified OK.

1.9.4 Maple step by step solution

Let’s solve
y′ + y tanh (x) = 2 sinh (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y tanh (x) + 2 sinh (x)
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y tanh (x) = 2 sinh (x)
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y tanh (x)) = 2µ(x) sinh (x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y tanh (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tanh (x)

• Solve to find the integrating factor
µ(x) = cosh (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) sinh (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) sinh (x) dx+ c1

• Solve for y

y =
∫
2µ(x) sinh(x)dx+c1

µ(x)

• Substitute µ(x) = cosh (x)

y =
∫
2 cosh(x) sinh(x)dx+c1

cosh(x)

• Evaluate the integrals on the rhs

y = cosh(x)2+c1
cosh(x)

• Simplify
y = cosh (x) + c1sech(x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+y(x)*tanh(x)=2*sinh(x),y(x), singsol=all)� �

y(x) =
(
cosh (x)2 − 1

2 + c1

)
sech (x)

3 Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 20� �
DSolve[y'[x]+y[x]*Tanh[x]==2*Sinh[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2sech(x)(cosh(2x) + 2c1)
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Internal problem ID [5084]
Internal file name [OUTPUT/4577_Sunday_June_05_2022_03_01_12_PM_65545073/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − 2y = cos (x)x3

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = cos (x)x2

Hence the ode is

y′ − 2y
x

= cos (x)x2
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The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)

(
cos (x)x2)

d
dx

( y

x2

)
=
(

1
x2

)(
cos (x)x2)

d
( y

x2

)
= cos (x) dx

Integrating gives

y

x2 =
∫

cos (x) dx
y

x2 = sin (x) + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

y = x2 sin (x) + c1x
2

which simplifies to

y = x2(sin (x) + c1)

Summary
The solution(s) found are the following

(1)y = x2(sin (x) + c1)
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Figure 27: Slope field plot

Verification of solutions

y = x2(sin (x) + c1)

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y + cos (x)x3

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2dy

Which results in

S = y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y + cos (x)x3

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y
x3

Sy =
1
x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 = sin (x) + c1

Which simplifies to
y

x2 = sin (x) + c1

Which gives

y = x2(sin (x) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y+cos(x)x3

x
dS
dR

= cos (R)

R = x

S = y

x2

Summary
The solution(s) found are the following

(1)y = x2(sin (x) + c1)

105



Figure 28: Slope field plot

Verification of solutions

y = x2(sin (x) + c1)

Verified OK.

1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
2y + cos (x)x3) dx(

−2y − cos (x)x3) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y − cos (x)x3

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2y − cos (x)x3)

= −2

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−2)− (1))

= −3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
−2y − cos (x)x3)

= −2y − cos (x)x3

x3

And

N = µN

= 1
x3 (x)

= 1
x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2y − cos (x)x3

x3

)
+
(

1
x2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y − cos (x)x3

x3 dx

(3)φ = − sin (x) + y

x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x2 . Therefore equation (4) becomes

(5)1
x2 = 1

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − sin (x) + y

x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x) + y

x2
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The solution becomes
y = x2(sin (x) + c1)

Summary
The solution(s) found are the following

(1)y = x2(sin (x) + c1)

Figure 29: Slope field plot

Verification of solutions

y = x2(sin (x) + c1)

Verified OK.
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1.10.4 Maple step by step solution

Let’s solve
xy′ − 2y = cos (x)x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2y

x
+ cos (x)x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y

x
= cos (x)x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2y

x

)
= µ(x) cos (x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x)x2dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1
x2

y = x2(∫ cos (x) dx+ c1
)

• Evaluate the integrals on the rhs
y = x2(sin (x) + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)-2*y(x)=x^3*cos(x),y(x), singsol=all)� �

y(x) = (sin (x) + c1)x2

3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 14� �
DSolve[x*y'[x]-2*y[x]==x^3*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(sin(x) + c1)
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1.11 problem 11
1.11.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 113
1.11.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 117
1.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 121

Internal problem ID [5085]
Internal file name [OUTPUT/4578_Sunday_June_05_2022_03_01_13_PM_85534098/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′ + y

x
− y3 = 0

1.11.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(y2x− 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y3x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3x2dy

Which results in

S = − 1
2y2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y2x− 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y2x3

Sy =
1

y3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
2y2x2 = c1 −

1
x

Which simplifies to

− 1
2y2x2 = c1 −

1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
y2x−1

)
x

dS
dR

= 1
R2

R = x

S = − 1
2y2x2

Summary
The solution(s) found are the following

(1)− 1
2y2x2 = c1 −

1
x
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Figure 30: Slope field plot

Verification of solutions

− 1
2y2x2 = c1 −

1
x

Verified OK.

1.11.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y2x− 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = 1
n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
y2x

+ 1 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

x
+ 1

w′ = 2w
x

− 2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −2

118



Hence the ode is

w′(x)− 2w(x)
x

= −2

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ) (−2)

d
dx

( w
x2

)
=
(

1
x2

)
(−2)

d
( w
x2

)
=
(
− 2
x2

)
dx

Integrating gives

w

x2 =
∫

− 2
x2 dx

w

x2 = 2
x
+ c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = c1x
2 + 2x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1x
2 + 2x

Solving for y gives

y(x) = 1√
x (c1x+ 2)

y(x) = − 1√
x (c1x+ 2)

119



Summary
The solution(s) found are the following

(1)y = 1√
x (c1x+ 2)

(2)y = − 1√
x (c1x+ 2)

Figure 31: Slope field plot

Verification of solutions

y = 1√
x (c1x+ 2)

Verified OK.

y = − 1√
x (c1x+ 2)

Verified OK.
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1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
y
(
y2x− 1

))
dx(

−y
(
y2x− 1

))
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
y2x− 1

)
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y
(
y2x− 1

))
= −3y2x+ 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
−3y2x+ 1

)
− (1)

)
= −3y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (y2x− 1)
(
(1)−

(
−3y2x+ 1

))
= − 3yx

y2x− 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (−3y2x+ 1)
x (−y (y2x− 1))− y (x)

= − 3
yx

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt

The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(
−y
(
y2x− 1

))
= −y2x+ 1

y2x3

And

N = µN

= 1
x3y3

(x)

= 1
y3x2
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−y2x+ 1
y2x3

)
+
(

1
y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y2x+ 1

y2x3 dx

(3)φ = 2y2x− 1
2y2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2

yx
− 2y2x− 1

y3x2 + f ′(y)

= 1
y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y3x2 . Therefore equation (4) becomes

(5)1
y3x2 = 1

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2y2x− 1
2y2x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
2y2x− 1
2y2x2

Summary
The solution(s) found are the following

(1)2xy2 − 1
2y2x2 = c1

Figure 32: Slope field plot
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Verification of solutions

2xy2 − 1
2y2x2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x)+y(x)/x=y(x)^3,y(x), singsol=all)� �

y(x) = 1√
x (c1x+ 2)

y(x) = − 1√
x (c1x+ 2)

3 Solution by Mathematica
Time used: 0.375 (sec). Leaf size: 40� �
DSolve[y'[x]+y[x]/x==y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x(2 + c1x)

y(x) → 1√
x(2 + c1x)

y(x) → 0
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1.12 problem 12
1.12.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 127
1.12.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 131
1.12.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 135

Internal problem ID [5086]
Internal file name [OUTPUT/4579_Sunday_June_05_2022_03_01_15_PM_92031906/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Test excercise 24. page 1067
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy′ + 3y − y2x2 = 0

1.12.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(y x2 − 3)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x3dy

Which results in

S = − 1
y x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y x2 − 3)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
y x4

Sy =
1

y2x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
yx3 = c1 −

1
x

Which simplifies to

− 1
yx3 = c1 −

1
x

Which gives

y = − 1
x2 (c1x− 1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
y x2−3

)
x

dS
dR

= 1
R2

R = x

S = − 1
y x3

130



Summary
The solution(s) found are the following

(1)y = − 1
x2 (c1x− 1)

Figure 33: Slope field plot

Verification of solutions

y = − 1
x2 (c1x− 1)

Verified OK.

1.12.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y x2 − 3)
x

This is a Bernoulli ODE.
y′ = −3

x
y + xy2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −3
x

f1(x) = x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 3
yx

+ x (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −3w(x)
x

+ x

w′ = 3w
x

− x (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −3
x

q(x) = −x

Hence the ode is

w′(x)− 3w(x)
x

= −x

The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes

d
dx(µw) = (µ) (−x)

d
dx

( w
x3

)
=
(

1
x3

)
(−x)

d
( w
x3

)
=
(
− 1
x2

)
dx

Integrating gives

w

x3 =
∫

− 1
x2 dx

w

x3 = 1
x
+ c1

Dividing both sides by the integrating factor µ = 1
x3 results in

w(x) = c1x
3 + x2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= c1x

3 + x2
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Or

y = 1
c1x3 + x2

Summary
The solution(s) found are the following

(1)y = 1
c1x3 + x2

Figure 34: Slope field plot

Verification of solutions

y = 1
c1x3 + x2

Verified OK.
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1.12.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(y x2 − 3)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2x− 3y
x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 3
x
and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = −3
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

xu′′(x) + 2u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 +
c2
x

The above shows that
u′(x) = − c2

x2
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Using the above in (1) gives the solution

y = c2
x3
(
c1 + c2

x

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 1
x2 (c3x+ 1)

Summary
The solution(s) found are the following

(1)y = 1
x2 (c3x+ 1)

Figure 35: Slope field plot

Verification of solutions

y = 1
x2 (c3x+ 1)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)+3*y(x)=x^2*y(x)^2,y(x), singsol=all)� �

y(x) = 1
x2 (c1x+ 1)

3 Solution by Mathematica
Time used: 0.137 (sec). Leaf size: 22� �
DSolve[x*y'[x]+3*y[x]==x^2*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
x2 + c1x3

y(x) → 0
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2.1 problem 1
2.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 140
2.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 142

Internal problem ID [5087]
Internal file name [OUTPUT/4580_Sunday_June_05_2022_03_01_16_PM_65589201/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x(y − 3) y′ − 4y = 0

2.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 4y
x (y − 3)

Where f(x) = 4
x
and g(y) = y

y−3 . Integrating both sides gives

1
y

y−3
dy = 4

x
dx

∫ 1
y

y−3
dy =

∫ 4
x
dx

y − 3 ln (y) = 4 ln (x) + c1
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Which results in

y = e
−LambertW

(
− e−

4 ln(x)
3 − c1

3
3

)
− 4 ln(x)

3 − c1
3

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
− e−

4 ln(x)
3 − c1

3
3

)
− 4 ln(x)

3 − c1
3

Figure 36: Slope field plot

Verification of solutions

y = e
−LambertW

(
− e−

4 ln(x)
3 − c1

3
3

)
− 4 ln(x)

3 − c1
3

Verified OK.
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2.1.2 Maple step by step solution

Let’s solve
x(y − 3) y′ − 4y = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y−3)

y
= 4

x

• Integrate both sides with respect to x∫ y′(y−3)
y

dx =
∫ 4

x
dx+ c1

• Evaluate integral
y − 3 ln (y) = 4 ln (x) + c1

• Solve for y

y = e
−LambertW

(
− e−

4 ln(x)
3 − c1

3
3

)
− 4 ln(x)

3 − c1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 16� �
dsolve(x*(y(x)-3)*diff(y(x),x)=4*y(x),y(x), singsol=all)� �

y(x) = −3 LambertW
(
−e−

4c1
3

3x 4
3

)
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3 Solution by Mathematica
Time used: 13.068 (sec). Leaf size: 94� �
DSolve[x*(y[x]-3)*y'[x]==4*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3W
(
1
3

3

√
−e−c1

x4

)

y(x) → −3W
(
−1
3

3
√
−1 3

√
−e−c1

x4

)

y(x) → −3W
(
1
3(−1)2/3 3

√
−e−c1

x4

)
y(x) → 0
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2.2 problem 2
2.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 144
2.2.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 145
2.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 146

Internal problem ID [5088]
Internal file name [OUTPUT/4581_Sunday_June_05_2022_03_01_17_PM_19661026/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x3 + 1

)
y′ − yx2 = 0

With initial conditions

[y(1) = 2]

2.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − x2

x3 + 1
q(x) = 0
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Hence the ode is

y′ − x2y

x3 + 1 = 0

The domain of p(x) = − x2

x3+1 is

{x < −1∨−1 < x}

And the point x0 = 1 is inside this domain. Hence solution exists and is unique.

2.2.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x2y

x3 + 1

Where f(x) = x2

x3+1 and g(y) = y. Integrating both sides gives

1
y
dy = x2

x3 + 1 dx∫ 1
y
dy =

∫
x2

x3 + 1 dx

ln (y) = ln (x3 + 1)
3 + c1

y = e
ln

(
x3+1

)
3 +c1

= c1
(
x3 + 1

) 1
3

Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 2 1
3 c1

c1 = 2 2
3

Substituting c1 found above in the general solution gives

y = 2 2
3
(
x3 + 1

) 1
3
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Summary
The solution(s) found are the following

(1)y = 2 2
3
(
x3 + 1

) 1
3

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2 2
3
(
x3 + 1

) 1
3

Verified OK.

2.2.3 Maple step by step solution

Let’s solve
[(x3 + 1) y′ − yx2 = 0, y(1) = 2]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x2

x3+1

• Integrate both sides with respect to x∫
y′

y
dx =

∫
x2

x3+1dx+ c1
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• Evaluate integral

ln (y) = ln
(
x3+1

)
3 + c1

• Solve for y

y = e
ln

(
x3+1

)
3 +c1

• Use initial condition y(1) = 2

2 = e
ln(2)
3 +c1

• Solve for c1
c1 = 2 ln(2)

3

• Substitute c1 = 2 ln(2)
3 into general solution and simplify

y = 2 2
3 (x3 + 1)

1
3

• Solution to the IVP

y = 2 2
3 (x3 + 1)

1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve([(1+x^3)*diff(y(x),x)=x^2*y(x),y(1) = 2],y(x), singsol=all)� �

y(x) = 2 2
3
(
x3 + 1

) 1
3

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 20� �
DSolve[{(1+x^3)*y'[x]==x^2*y[x],{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 22/3 3
√
x3 + 1

148



2.3 problem 3
2.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 149
2.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 151

Internal problem ID [5089]
Internal file name [OUTPUT/4582_Sunday_June_05_2022_03_01_18_PM_46227135/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

(1 + y)2 y′ = −x3

2.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − x3

(1 + y)2

Where f(x) = −x3 and g(y) = 1
(1+y)2 . Integrating both sides gives

1
1

(1+y)2
dy = −x3 dx

∫ 1
1

(1+y)2
dy =

∫
−x3 dx

(1 + y)3

3 = −x4

4 + c1
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Which results in

y = (−6x4 + 24c1)
1
3

2 − 1

y = −(−6x4 + 24c1)
1
3

4 + i
√
3 (−6x4 + 24c1)

1
3

4 − 1

y = −(−6x4 + 24c1)
1
3

4 − i
√
3 (−6x4 + 24c1)

1
3

4 − 1

Summary
The solution(s) found are the following

(1)y = (−6x4 + 24c1)
1
3

2 − 1

(2)y = −(−6x4 + 24c1)
1
3

4 + i
√
3 (−6x4 + 24c1)

1
3

4 − 1

(3)y = −(−6x4 + 24c1)
1
3

4 − i
√
3 (−6x4 + 24c1)

1
3

4 − 1

Figure 38: Slope field plot
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Verification of solutions

y = (−6x4 + 24c1)
1
3

2 − 1

Verified OK.

y = −(−6x4 + 24c1)
1
3

4 + i
√
3 (−6x4 + 24c1)

1
3

4 − 1

Verified OK.

y = −(−6x4 + 24c1)
1
3

4 − i
√
3 (−6x4 + 24c1)

1
3

4 − 1

Verified OK.

2.3.2 Maple step by step solution

Let’s solve
(1 + y)2 y′ = −x3

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(1 + y)2 y′dx =

∫
−x3dx+ c1

• Evaluate integral
(1+y)3

3 = −x4

4 + c1

• Solve for y

y =
(
−6x4+24c1

) 1
3

2 − 1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 89� �
dsolve(x^3+(y(x)+1)^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = (−6x4 − 24c1)
1
3

2 − 1

y(x) = −(−6x4 − 24c1)
1
3

4 − i
√
3 (−6x4 − 24c1)

1
3

4 − 1

y(x) = −(−6x4 − 24c1)
1
3

4 + i
√
3 (−6x4 − 24c1)

1
3

4 − 1

3 Solution by Mathematica
Time used: 0.483 (sec). Leaf size: 110� �
DSolve[x^3+(y[x]+1)^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 +
3
√

−3x4 + 4 + 12c1
22/3

y(x) → −1 +
i
(√

3 + i
) 3
√

−3x4 + 4 + 12c1
2 22/3

y(x) → −1−
(
1 + i

√
3
) 3
√

−3x4 + 4 + 12c1
2 22/3
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2.4 problem 4
2.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 153
2.4.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 154
2.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 155

Internal problem ID [5090]
Internal file name [OUTPUT/4583_Sunday_June_05_2022_03_01_19_PM_25170665/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

cos (y) +
(
1 + e−x

)
sin (y) y′ = 0

With initial conditions [
y(0) = π

4

]
2.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − cos (y)
(1 + e−x) sin (y)

The x domain of f(x, y) when y = π
4 is

{−2iπ_Z92− iπ < x}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.
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2.4.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − cot (y)
1 + e−x

Where f(x) = − 1
1+e−x and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = − 1

1 + e−x
dx∫ 1

cot (y) dy =
∫

− 1
1 + e−x

dx

− ln (cos (y)) = − ln
(
1 + e−x

)
+ ln

(
e−x
)
+ c1

Raising both side to exponential gives

1
cos (y) = e− ln

(
1+e−x

)
+ln

(
e−x

)
+c1

Which simplifies to

sec (y) = c2e− ln
(
1+e−x

)
+ln

(
e−x

)

Initial conditions are used to solve for c1. Substituting x = 0 and y = π
4 in the above

solution gives an equation to solve for the constant of integration.

π

4 = π

2 − arcsin
(
2 e−c1

c2

)

c1 = −
ln
(

c22
8

)
2

Substituting c1 found above in the general solution gives

y = π

2 − arcsin
(
(1 + ex)

√
2

4

)
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Summary
The solution(s) found are the following

(1)y = π

2 − arcsin
(
(1 + ex)

√
2

4

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = π

2 − arcsin
(
(1 + ex)

√
2

4

)

Verified OK. {positive}

2.4.3 Maple step by step solution

Let’s solve[
cos (y) + (1 + e−x) sin (y) y′ = 0, y(0) = π

4

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′ sin(y)
cos(y) = − 1

1+e−x

• Integrate both sides with respect to x
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∫ y′ sin(y)
cos(y) dx =

∫
− 1

1+e−xdx+ c1

• Evaluate integral
− ln (cos (y)) = − ln (1 + e−x) + ln (e−x) + c1

• Solve for y

y = arccos
(

e−c1+x(1+ex)
ex

)
• Use initial condition y(0) = π

4
π
4 = arccos (2 e−c1)

• Solve for c1
c1 = 3 ln(2)

2

• Substitute c1 = 3 ln(2)
2 into general solution and simplify

y = arccos
(

(1+ex)
√
2

4

)
• Solution to the IVP

y = arccos
(

(1+ex)
√
2

4

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.344 (sec). Leaf size: 14� �
dsolve([cos(y(x))+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(0) = 1/4*Pi],y(x), singsol=all)� �

y(x) = arccos
(√

2 (ex + 1)
4

)
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3 Solution by Mathematica
Time used: 50.086 (sec). Leaf size: 20� �
DSolve[{Cos[y[x]]+(1+Exp[-x])*Sin[y[x]]*y'[x]==0,{y[0]==Pi/4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arccos
(
ex + 1
2
√
2

)
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2.5 problem 5
2.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 158
2.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 160

Internal problem ID [5091]
Internal file name [OUTPUT/4584_Sunday_June_05_2022_03_01_20_PM_83982119/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x2(1 + y) + y2(x− 1) y′ = 0

2.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − x2(1 + y)
y2 (x− 1)

Where f(x) = − x2

x−1 and g(y) = 1+y
y2

. Integrating both sides gives

1
1+y
y2

dy = − x2

x− 1 dx

∫ 1
1+y
y2

dy =
∫

− x2

x− 1 dx

y2

2 − y + ln (1 + y) = −x2

2 − x− ln (x− 1) + c1
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Which results in

y = eRootOf
(
−e2_Z−x2−2 ln(x−1)+4 e_Z+2c1−2_Z−2x−3

)
− 1

Summary
The solution(s) found are the following

(1)y = eRootOf
(
−e2_Z−x2−2 ln(x−1)+4 e_Z+2c1−2_Z−2x−3

)
− 1

Figure 40: Slope field plot

Verification of solutions

y = eRootOf
(
−e2_Z−x2−2 ln(x−1)+4 e_Z+2c1−2_Z−2x−3

)
− 1

Verified OK.
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2.5.2 Maple step by step solution

Let’s solve
x2(1 + y) + y2(x− 1) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y2

1+y
= − x2

x−1

• Integrate both sides with respect to x∫
y′y2

1+y
dx =

∫
− x2

x−1dx+ c1

• Evaluate integral
y2

2 − y + ln (1 + y) = −x2

2 − x− ln (x− 1) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 30� �
dsolve(x^2*(y(x)+1)+y(x)^2*(x-1)*diff(y(x),x)=0,y(x), singsol=all)� �

x2

2 + x+ ln (x− 1) + y(x)2

2 − y(x) + ln (y(x) + 1) + c1 = 0
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3 Solution by Mathematica
Time used: 0.42 (sec). Leaf size: 56� �
DSolve[x^2*(y[x]+1)+y[x]^2*(x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
1
2(#1+ 1)2 − 2(#1+ 1) + log(#1+ 1)&

] [
−x2

2 − x

− log(x− 1) + 3
2 + c1

]
y(x) → −1
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2.6 problem 6
2.6.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 162
2.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 165

Internal problem ID [5092]
Internal file name [OUTPUT/4585_Sunday_June_05_2022_03_01_21_PM_13981050/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

(2y − x) y′ − y = 2x

2.6.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y + 2x
−x+ 2y (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −y − 2x and N = x − 2y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u+ 2

2u− 1
du
dx =

u(x)+2
2u(x)−1 − u(x)

x

Or

u′(x)−
u(x)+2
2u(x)−1 − u(x)

x
= 0

Or
2u′(x)xu(x)− u′(x)x+ 2u(x)2 − 2u(x)− 2 = 0

Or
−2 + x(2u(x)− 1)u′(x) + 2u(x)2 − 2u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(u2 − u− 1)
x (2u− 1)

Where f(x) = − 2
x
and g(u) = u2−u−1

2u−1 . Integrating both sides gives

1
u2−u−1
2u−1

du = −2
x
dx

∫ 1
u2−u−1
2u−1

du =
∫

−2
x
dx

ln
(
u2 − u− 1

)
= −2 ln (x) + c2

Raising both side to exponential gives

u2 − u− 1 = e−2 ln(x)+c2

Which simplifies to

u2 − u− 1 = c3
x2
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Which simplifies to

u(x)2 − u(x)− 1 = c3ec2
x2

The solution is

u(x)2 − u(x)− 1 = c3ec2
x2

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y2

x2 − y

x
− 1 = c3ec2

x2

Which simplifies to

y2 − xy − x2 = c3ec2

Summary
The solution(s) found are the following

(1)y2 − xy − x2 = c3ec2

Figure 41: Slope field plot
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Verification of solutions

y2 − xy − x2 = c3ec2

Verified OK.

2.6.2 Maple step by step solution

Let’s solve
(2y − x) y′ − y = 2x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−1 = −1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−y − 2x) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2 − xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−x+ 2y = −x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)
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d
dy
f1(y) = 2y

• Solve for f1(y)
f1(y) = y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −x2 − xy + y2

• Substitute F (x, y) into the solution of the ODE
−x2 − xy + y2 = c1

• Solve for y{
y = x

2 −
√

5x2+4c1
2 , y = x

2 +
√

5x2+4c1
2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 51� �
dsolve((2*y(x)-x)*diff(y(x),x)=2*x+y(x),y(x), singsol=all)� �

y(x) = c1x−
√

5c21x2 + 4
2c1

y(x) = c1x+
√

5c21x2 + 4
2c1
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3 Solution by Mathematica
Time used: 0.454 (sec). Leaf size: 102� �
DSolve[(2*y[x]-x)*y'[x]==2*x+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x−

√
5x2 − 4ec1

)
y(x) → 1

2

(
x+

√
5x2 − 4ec1

)
y(x) → 1

2

(
x−

√
5
√
x2
)

y(x) → 1
2

(√
5
√
x2 + x

)
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2.7 problem 7
2.7.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 168

Internal problem ID [5093]
Internal file name [OUTPUT/4586_Sunday_June_05_2022_03_01_22_PM_75100719/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

xy + y2 +
(
x2 − xy

)
y′ = 0

2.7.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y(x+ y)
x (−x+ y) (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = −y(x+ y) and N = x(x− y) are both
homogeneous and of the same order n = 2. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u(u+ 1)

u− 1
du
dx =

u(x)(u(x)+1)
u(x)−1 − u(x)

x

Or

u′(x)−
u(x)(u(x)+1)

u(x)−1 − u(x)
x

= 0

Or
u′(x)xu(x)− u′(x)x− 2u(x) = 0

Or
x(u(x)− 1)u′(x)− 2u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u
x (u− 1)

Where f(x) = 2
x
and g(u) = u

u−1 . Integrating both sides gives

1
u

u−1
du = 2

x
dx

∫ 1
u

u−1
du =

∫ 2
x
dx

u− ln (u) = 2 ln (x) + c2

The solution is
u(x)− ln (u(x))− 2 ln (x)− c2 = 0

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y

x
− ln

(y
x

)
− 2 ln (x)− c2 = 0
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Summary
The solution(s) found are the following

(1)y

x
− ln

(y
x

)
− 2 ln (x)− c2 = 0

Figure 42: Slope field plot

Verification of solutions
y

x
− ln

(y
x

)
− 2 ln (x)− c2 = 0

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 17� �
dsolve((x*y(x)+y(x)^2)+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW
(
−e−2c1

x2

)
x

3 Solution by Mathematica
Time used: 2.801 (sec). Leaf size: 25� �
DSolve[(x*y[x]+y[x]^2)+(x^2-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW

(
−e−c1

x2

)
y(x) → 0
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2.8 problem 8
2.8.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 172

Internal problem ID [5094]
Internal file name [OUTPUT/4587_Sunday_June_05_2022_03_01_23_PM_6639194/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y3 − 3y′y2x = −x3

2.8.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= x3 + y3

3y2x (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = x3+y3 and N = 3y2x are both homogeneous
and of the same order n = 3. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = 1

3u2 + u

3
du
dx =

1
3u(x)2 −

2u(x)
3

x

Or

u′(x)−
1

3u(x)2 −
2u(x)

3

x
= 0

Or
3u′(x)u(x)2 x+ 2u(x)3 − 1 = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u3 − 1
3u2x

Where f(x) = − 1
3x and g(u) = 2u3−1

u2 . Integrating both sides gives

1
2u3−1
u2

du = − 1
3x dx

∫ 1
2u3−1
u2

du =
∫

− 1
3x dx

ln (2u3 − 1)
6 = − ln (x)

3 + c2

Raising both side to exponential gives(
2u3 − 1

) 1
6 = e−

ln(x)
3 +c2

Which simplifies to (
2u3 − 1

) 1
6 = c3

x
1
3

Which simplifies to (
2u(x)3 − 1

) 1
6 = c3ec2

x
1
3
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The solution is (
2u(x)3 − 1

) 1
6 = c3ec2

x
1
3

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution (
2y3
x3 − 1

) 1
6

= c3ec2

x
1
3

Which simplifies to (
−−2y3 + x3

x3

) 1
6

= c3ec2

x
1
3

Summary
The solution(s) found are the following

(1)
(
−−2y3 + x3

x3

) 1
6

= c3ec2

x
1
3

Figure 43: Slope field plot
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Verification of solutions (
−−2y3 + x3

x3

) 1
6

= c3ec2

x
1
3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 74� �
dsolve((x^3+y(x)^3)=3*x*y(x)^2*diff(y(x),x),y(x), singsol=all)� �

y(x) = 2 2
3 (x(x2 + 2c1))

1
3

2

y(x) = −
2 2

3 (x(x2 + 2c1))
1
3
(
1 + i

√
3
)

4

y(x) =
2 2

3 (x(x2 + 2c1))
1
3
(
i
√
3− 1

)
4

3 Solution by Mathematica
Time used: 0.21 (sec). Leaf size: 90� �
DSolve[(x^3+y[x]^3)==3*x*y[x]^2*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3

√
−1
2

3
√
x 3
√
x2 + 2c1

y(x) →
3
√
x 3
√

x2 + 2c1
3
√
2

y(x) → (−1)2/3 3
√
x 3
√

x2 + 2c1
3
√
2
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2.9 problem 9
2.9.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 176

Internal problem ID [5095]
Internal file name [OUTPUT/4588_Sunday_June_05_2022_03_01_24_PM_29063218/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y + (4y + 3x) y′ = 3x

2.9.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= −−3x+ y

4y + 3x (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that bothM = 3x−y and N = 4y+3x are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = y

x
, or y = ux.

Hence
dy
dx = du

dxx+ u

176



Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = −u+ 3

4u+ 3
du
dx =

−u(x)+3
4u(x)+3 − u(x)

x

Or

u′(x)−
−u(x)+3
4u(x)+3 − u(x)

x
= 0

Or
4u′(x)xu(x) + 3u′(x)x+ 4u(x)2 + 4u(x)− 3 = 0

Or
−3 + x(4u(x) + 3)u′(x) + 4u(x)2 + 4u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −4u2 + 4u− 3
x (4u+ 3)

Where f(x) = − 1
x
and g(u) = 4u2+4u−3

4u+3 . Integrating both sides gives

1
4u2+4u−3

4u+3
du = −1

x
dx

∫ 1
4u2+4u−3

4u+3
du =

∫
−1
x
dx

5 ln (2u− 1)
8 + 3 ln (2u+ 3)

8 = − ln (x) + c2

The above can be written as
5 ln (2u− 1) + 3 ln (2u+ 3)

8 = − ln (x) + c2

5 ln (2u− 1) + 3 ln (2u+ 3) = (8) (− ln (x) + c2)
= −8 ln (x) + 8c2

Raising both side to exponential gives

e5 ln(2u−1)+3 ln(2u+3) = e−8 ln(x)+8c2
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Which simplifies to

(2u− 1)5 (2u+ 3)3 = 8c2
x8

= c3
x8

Which simplifies to

u(x)

=
RootOf

(
_Z8 + 4_Z7 − 8_Z6 − 28_Z5 + 50_Z4 + 44_Z3 − c3e8c2

x8 − 144_Z2 + 108_Z− 27
)

2

Now u in the above solution is replaced back by y using u = y
x
which results in the

solution

y =
xRootOf

(
_Z8x8 + 4_Z7x8 − 8_Z6x8 − 28_Z5x8 + 50_Z4x8 + 44_Z3x8 − 144_Z2x8 − c3e8c2 + 108_Zx8 − 27x8)

2
Summary
The solution(s) found are the following

(1)y

=
xRootOf

(
_Z8x8 + 4_Z7x8 − 8_Z6x8 − 28_Z5x8 + 50_Z4x8 + 44_Z3x8 − 144_Z2x8 − c3e8c2 + 108_Zx8 − 27x8)

2

Figure 44: Slope field plot
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Verification of solutions
y

=
xRootOf

(
_Z8x8 + 4_Z7x8 − 8_Z6x8 − 28_Z5x8 + 50_Z4x8 + 44_Z3x8 − 144_Z2x8 − c3e8c2 + 108_Zx8 − 27x8)

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.36 (sec). Leaf size: 278� �
dsolve(y(x)-3*x+(4*y(x)+3*x)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=
−3x8c1RootOf

(
_Z64c1x

8 + 12_Z56c1x
8 + 48_Z48c1x

8 + 64_Z40c1x
8 − 1

)56 − 24x8c1RootOf
(
_Z64c1x

8 + 12_Z56c1x
8 + 48_Z48c1x

8 + 64_Z40c1x
8 − 1

)48 − 48x8c1RootOf
(
_Z64c1x

8 + 12_Z56c1x
8 + 48_Z48c1x

8 + 64_Z40c1x
8 − 1

)40 + 1

2c1x7RootOf
(
_Z64c1x8 + 12_Z56c1x8 + 48_Z48c1x8 + 64_Z40c1x8 − 1

)40 (RootOf
(
_Z64c1x8 + 12_Z56c1x8 + 48_Z48c1x8 + 64_Z40c1x8 − 1

)16 + 8RootOf
(
_Z64c1x8 + 12_Z56c1x8 + 48_Z48c1x8 + 64_Z40c1x8 − 1

)8 + 16
)
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3 Solution by Mathematica
Time used: 5.296 (sec). Leaf size: 673� �
DSolve[y[x]-3*x+(4*y[x]+3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) → Root

[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 1
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 2
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 3
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 4
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 5
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 6
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 7
]

y(x) → Root
[
256#18 + 512#17x− 512#16x2 − 896#15x3 + 800#14x4 + 352#13x5

− 576#12x6 + 216#1x7 − 27x8 + e8c1&, 8
]
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2.10 problem 10
2.10.1 Solving as homogeneous ode . . . . . . . . . . . . . . . . . . . . 181

Internal problem ID [5096]
Internal file name [OUTPUT/4589_Sunday_June_05_2022_03_01_25_PM_72423458/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
x3 + 3xy2

)
y′ − y3 − 3yx2 = 0

2.10.1 Solving as homogeneous ode

In canonical form, the ODE is

y′ = F (x, y)

= y(3x2 + y2)
x (x2 + 3y2) (1)

An ode of the form y′ = M(x,y)
N(x,y) is called homogeneous if the functions M(x, y) and

N(x, y) are both homogeneous functions and of the same order. Recall that a function
f(x, y) is homogeneous of order n if

f(tnx, tny) = tnf(x, y)

In this case, it can be seen that both M = y(3x2 + y2) and N = x(x2 + 3y2) are both
homogeneous and of the same order n = 3. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = y

x
,

or y = ux. Hence
dy
dx = du

dxx+ u
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Applying the transformation y = ux to the above ODE in (1) gives

du
dxx+ u = u(u2 + 3)

3u2 + 1

du
dx =

u(x)
(
u(x)2+3

)
3u(x)2+1 − u(x)

x

Or

u′(x)−
u(x)

(
u(x)2+3

)
3u(x)2+1 − u(x)

x
= 0

Or
3u′(x)u(x)2 x+ 2u(x)3 + u′(x)x− 2u(x) = 0

Or
x
(
3u(x)2 + 1

)
u′(x) + 2u(x)3 − 2u(x) = 0

Which is now solved as separable in u(x). Which is now solved in u(x). In canonical
form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2(u3 − u)
x (3u2 + 1)

Where f(x) = − 2
x
and g(u) = u3−u

3u2+1 . Integrating both sides gives

1
u3−u
3u2+1

du = −2
x
dx

∫ 1
u3−u
3u2+1

du =
∫

−2
x
dx

2 ln (u+ 1) + 2 ln (u− 1)− ln (u) = −2 ln (x) + c2

Raising both side to exponential gives

e2 ln(u+1)+2 ln(u−1)−ln(u) = e−2 ln(x)+c2

Which simplifies to

u4 − 2u2 + 1
u

= c3
x2
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Now u in the above solution is replaced back by y using u = y
x
which results in the

solution
y = xRootOf

(
x2_Z4 − 2x2_Z2 − _Zc3 + x2)

Summary
The solution(s) found are the following

(1)y = xRootOf
(
x2_Z4 − 2x2_Z2 − _Zc3 + x2)

Figure 45: Slope field plot

Verification of solutions

y = xRootOf
(
x2_Z4 − 2x2_Z2 − _Zc3 + x2)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 23� �
dsolve((x^3+3*x*y(x)^2)*diff(y(x),x)=y(x)^3+3*x^2*y(x),y(x), singsol=all)� �

y(x) = RootOf
(
_Z4c1x− c1x− _Z

)2
x
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3 Solution by Mathematica
Time used: 60.142 (sec). Leaf size: 1659� �
DSolve[(x^3+3*x*y[x]^2)*y'[x]==y[x]^3+3*x^2*y[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
6


−
√
3

√√√√√4x2 + 16 3
√
2x4

3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3
√
2

−3

√√√√√√√√√
8x2

3 − 16 3
√
2x4

3 3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

− 2
√
3ec1x√√√√√4x2 + 16

3
√
2x4

3
√
128x6 + 27e2c1x2 + 3

√
768e2c1x8 + 81e4c1x4

+
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3
√
2

−
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3 3
√
2


y(x)

→ 1
6


3

√√√√√√√√√
8x2

3 − 16 3
√
2x4

3 3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

− 2
√
3ec1x√√√√√4x2 + 16

3
√
2x4

3
√
128x6 + 27e2c1x2 + 3

√
768e2c1x8 + 81e4c1x4

+
3
√
128x6 + 27e2c1x2 + 3

√
768e2c1x8 + 81e4c1x4

3
√
2

−
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3 3
√
2

−
√
3

√√√√√4x2 + 16 3
√
2x4

3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3
√
2


y(x)

→ 1
6


√
3

√√√√√4x2 + 16 3
√
2x4

3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3
√
2

−3

√√√√√√√√√
8x2

3 − 16 3
√
2x4

3 3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+ 2
√
3ec1x√√√√√4x2 + 16

3
√
2x4

3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3
√
2

−
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3 3
√
2


y(x)

→ 1
6


√
3

√√√√√4x2 + 16 3
√
2x4

3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3
√
2

+3

√√√√√√√√√
8x2

3 − 16 3
√
2x4

3 3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+ 2
√
3ec1x√√√√√4x2 + 16

3
√
2x4

3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

+
3
√
128x6 + 27e2c1x2 + 3

√
768e2c1x8 + 81e4c1x4

3
√
2

−
3
√

128x6 + 27e2c1x2 + 3
√
768e2c1x8 + 81e4c1x4

3 3
√
2
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2.11 problem 11
2.11.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 186
2.11.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 188

Internal problem ID [5097]
Internal file name [OUTPUT/4590_Sunday_June_05_2022_03_01_26_PM_33328603/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

−y + xy′ = x3 + 3x2 − 2x

2.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x2 + 3x− 2

Hence the ode is

y′ − y

x
= x2 + 3x− 2

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x
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The ode becomes

d
dx(µy) = (µ)

(
x2 + 3x− 2

)
d
dx

(y
x

)
=
(
1
x

)(
x2 + 3x− 2

)
d
(y
x

)
=
(
x2 + 3x− 2

x

)
dx

Integrating gives

y

x
=
∫

x2 + 3x− 2
x

dx

y

x
= x2

2 + 3x− 2 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x

(
x2

2 + 3x− 2 ln (x)
)
+ c1x

which simplifies to

y = x(x2 + 6x− 4 ln (x) + 2c1)
2

Summary
The solution(s) found are the following

(1)y = x(x2 + 6x− 4 ln (x) + 2c1)
2
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Figure 46: Slope field plot

Verification of solutions

y = x(x2 + 6x− 4 ln (x) + 2c1)
2

Verified OK.

2.11.2 Maple step by step solution

Let’s solve
−y + xy′ = x3 + 3x2 − 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ x2 + 3x− 2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= x2 + 3x− 2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − y

x

)
= µ(x) (x2 + 3x− 2)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x2 + 3x− 2) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x2 + 3x− 2) dx+ c1

• Solve for y

y =
∫
µ(x)

(
x2+3x−2

)
dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

x2+3x−2
x

dx+ c1
)

• Evaluate the integrals on the rhs

y = x
(

x2

2 + 3x− 2 ln (x) + c1
)

• Simplify

y = x
(
x2+6x−4 ln(x)+2c1

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 21� �
dsolve(x*diff(y(x),x)-y(x)=x^3+3*x^2-2*x,y(x), singsol=all)� �

y(x) = (x2 + 6x− 4 ln (x) + 2c1)x
2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 24� �
DSolve[x*y'[x]-y[x]==x^3+3*x^2-2*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
x2

2 + 3x− 2 log(x) + c1

)
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2.12 problem 12
2.12.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 191
2.12.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 193

Internal problem ID [5098]
Internal file name [OUTPUT/4591_Sunday_June_05_2022_03_01_27_PM_55050272/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

y′ + y tan (x) = sin (x)

2.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = tan (x)
q(x) = sin (x)

Hence the ode is

y′ + y tan (x) = sin (x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µy) = (µ) (sin (x))

d
dx(sec (x) y) = (sec (x)) (sin (x))

d(sec (x) y) = tan (x) dx

Integrating gives

sec (x) y =
∫

tan (x) dx

sec (x) y = − ln (cos (x)) + c1

Dividing both sides by the integrating factor µ = sec (x) results in

y = − cos (x) ln (cos (x)) + cos (x) c1

which simplifies to

y = cos (x) (− ln (cos (x)) + c1)

Summary
The solution(s) found are the following

(1)y = cos (x) (− ln (cos (x)) + c1)
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Figure 47: Slope field plot

Verification of solutions

y = cos (x) (− ln (cos (x)) + c1)

Verified OK.

2.12.2 Maple step by step solution

Let’s solve
y′ + y tan (x) = sin (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y tan (x) + sin (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y tan (x) = sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y tan (x)) = µ(x) sin (x)
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• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = 1

cos(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)

y = cos (x)
(∫ sin(x)

cos(x)dx+ c1
)

• Evaluate the integrals on the rhs
y = cos (x) (− ln (cos (x)) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+y(x)*tan(x)=sin(x),y(x), singsol=all)� �

y(x) = (− ln (cos (x)) + c1) cos (x)
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3 Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 16� �
DSolve[y'[x]+y[x]*Tan[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(x)(− log(cos(x)) + c1)
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2.13 problem 13
2.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 196
2.13.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 197
2.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 198

Internal problem ID [5099]
Internal file name [OUTPUT/4592_Sunday_June_05_2022_03_01_28_PM_86121755/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

−y + xy′ = cos (x)x3

With initial conditions

[y(π) = 0]

2.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = cos (x)x2

Hence the ode is

y′ − y

x
= cos (x)x2
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The domain of p(x) = − 1
x
is

{x < 0∨ 0 < x}

And the point x0 = π is inside this domain. The domain of q(x) = cos (x)x2 is

{−∞ < x < ∞}

And the point x0 = π is also inside this domain. Hence solution exists and is unique.

2.13.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes
d
dx(µy) = (µ)

(
cos (x)x2)

d
dx

(y
x

)
=
(
1
x

)(
cos (x)x2)

d
(y
x

)
= (cos (x)x) dx

Integrating gives
y

x
=
∫

cos (x)x dx
y

x
= sin (x)x+ cos (x) + c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = x(sin (x)x+ cos (x)) + c1x

which simplifies to

y = x(sin (x)x+ cos (x) + c1)

Initial conditions are used to solve for c1. Substituting x = π and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = πc1 − π
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c1 = 1

Substituting c1 found above in the general solution gives

y = x(sin (x)x+ cos (x) + 1)

Summary
The solution(s) found are the following

(1)y = x(sin (x)x+ cos (x) + 1)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x(sin (x)x+ cos (x) + 1)

Verified OK.

2.13.3 Maple step by step solution

Let’s solve
[−y + xy′ = cos (x)x3, y(π) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = y
x
+ cos (x)x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= cos (x)x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x) cos (x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x)x2dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

cos (x)xdx+ c1
)

• Evaluate the integrals on the rhs
y = x(sin (x)x+ cos (x) + c1)

• Use initial condition y(π) = 0
0 = π(−1 + c1)

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = x(sin (x)x+ cos (x) + 1)

• Solution to the IVP
y = x(sin (x)x+ cos (x) + 1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([x*diff(y(x),x)-y(x)=x^3*cos(x),y(Pi) = 0],y(x), singsol=all)� �

y(x) = (cos (x) + sin (x)x+ 1)x

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 15� �
DSolve[{x*y'[x]-y[x]==x^3*Cos[x],{y[Pi]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x sin(x) + cos(x) + 1)
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2.14 problem 14
2.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 201
2.14.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 202
2.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 204

Internal problem ID [5100]
Internal file name [OUTPUT/4593_Sunday_June_05_2022_03_01_29_PM_28386368/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ + 3xy = 5x

With initial conditions

[y(1) = 2]

2.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 3x
x2 + 1

q(x) = 5x
x2 + 1
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Hence the ode is

y′ + 3xy
x2 + 1 = 5x

x2 + 1

The domain of p(x) = 3x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The domain of q(x) = 5x
x2+1 is

{−∞ < x < ∞}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

2.14.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 3x

x2+1dx

=
(
x2 + 1

) 3
2

The ode becomes

d
dx(µy) = (µ)

(
5x

x2 + 1

)
d
dx

((
x2 + 1

) 3
2 y
)
=
((

x2 + 1
) 3

2
)( 5x

x2 + 1

)
d
((

x2 + 1
) 3

2 y
)
=
(
5
√
x2 + 1x

)
dx

Integrating gives (
x2 + 1

) 3
2 y =

∫
5
√
x2 + 1x dx

(
x2 + 1

) 3
2 y = 5(x2 + 1)

3
2

3 + c1

Dividing both sides by the integrating factor µ = (x2 + 1)
3
2 results in

y = 5
3 + c1

(x2 + 1)
3
2
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = 5
3 + c1

√
2

4

c1 =
2
√
2

3
Substituting c1 found above in the general solution gives

y = 5(x2 + 1)
3
2 + 2

√
2

3 (x2 + 1)
3
2

Summary
The solution(s) found are the following

(1)y = 5(x2 + 1)
3
2 + 2

√
2

3 (x2 + 1)
3
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 5(x2 + 1)
3
2 + 2

√
2

3 (x2 + 1)
3
2

Verified OK.
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2.14.3 Maple step by step solution

Let’s solve
[(x2 + 1) y′ + 3xy = 5x, y(1) = 2]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

3y−5 = − x
x2+1

• Integrate both sides with respect to x∫
y′

3y−5dx =
∫
− x

x2+1dx+ c1

• Evaluate integral
ln(3y−5)

3 = − ln
(
x2+1

)
2 + c1

• Solve for y

y = e−
3 ln

(
x2+1

)
2 +3c1

3 + 5
3

• Use initial condition y(1) = 2

2 = e−
3 ln(2)

2 +3c1

3 + 5
3

• Solve for c1
c1 = ln(2)

2

• Substitute c1 = ln(2)
2 into general solution and simplify

y = 5
3 +

2
√
2

3(x2+1)
3
2

• Solution to the IVP

y = 5
3 +

2
√
2

3(x2+1)
3
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve([(1+x^2)*diff(y(x),x)+3*x*y(x)=5*x,y(1) = 2],y(x), singsol=all)� �

y(x) = 5
3 + 2

√
2

3 (x2 + 1)
3
2

3 Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 27� �
DSolve[{(1+x^2)*y'[x]+3*x*y[x]==5*x,{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
√
2

3 (x2 + 1)3/2
+ 5

3
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2.15 problem 15
2.15.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 206
2.15.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 207
2.15.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 208

Internal problem ID [5101]
Internal file name [OUTPUT/4594_Sunday_June_05_2022_03_01_30_PM_42109241/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = 5 ecos(x)

With initial conditions [
y
(π
2

)
= −4

]
2.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = 5 ecos(x)

Hence the ode is

y′ + y cot (x) = 5 ecos(x)
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The domain of p(x) = cot (x) is

{x < π_Z94∨ π_Z94 < x}

And the point x0 = π
2 is inside this domain. The domain of q(x) = 5 ecos(x) is

{−∞ < x < ∞}

And the point x0 = π
2 is also inside this domain. Hence solution exists and is unique.

2.15.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)

The ode becomes
d
dx(µy) = (µ)

(
5 ecos(x)

)
d
dx(y sin (x)) = (sin (x))

(
5 ecos(x)

)
d(y sin (x)) =

(
5 ecos(x) sin (x)

)
dx

Integrating gives

y sin (x) =
∫

5 ecos(x) sin (x) dx

y sin (x) = −5 ecos(x) + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = −5 ecos(x) csc (x) + c1 csc (x)

which simplifies to

y = csc (x)
(
−5 ecos(x) + c1

)
Initial conditions are used to solve for c1. Substituting x = π

2 and y = −4 in the above
solution gives an equation to solve for the constant of integration.

−4 = −5 + c1
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c1 = 1

Substituting c1 found above in the general solution gives

y = −5 ecos(x) csc (x) + csc (x)

Summary
The solution(s) found are the following

(1)y = −5 ecos(x) csc (x) + csc (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −5 ecos(x) csc (x) + csc (x)

Verified OK.

2.15.3 Maple step by step solution

Let’s solve[
y′ + y cot (x) = 5 ecos(x), y

(
π
2

)
= −4

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
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y′ = −y cot (x) + 5 ecos(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y cot (x) = 5 ecos(x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y cot (x)) = 5µ(x) ecos(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
5µ(x) ecos(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
5µ(x) ecos(x)dx+ c1

• Solve for y

y =
∫
5µ(x)ecos(x)dx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
5 ecos(x) sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs

y = −5 ecos(x)+c1
sin(x)

• Simplify
y = csc (x)

(
−5 ecos(x) + c1

)
• Use initial condition y

(
π
2

)
= −4

−4 = −5 + c1

• Solve for c1
c1 = 1

• Substitute c1 = 1 into general solution and simplify
y = −5 ecos(x) csc (x) + csc (x)
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• Solution to the IVP
y = −5 ecos(x) csc (x) + csc (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)+y(x)*cot(x)=5*exp(cos(x)),y(1/2*Pi) = -4],y(x), singsol=all)� �

y(x) = −5 ecos(x) csc (x) + csc (x)

3 Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 16� �
DSolve[{y'[x]+y[x]*Cot[x]==5*Exp[Cos[x]],{y[Pi/2]==-4}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
1− 5ecos(x)

)
csc(x)
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2.16 problem 16
2.16.1 Solving as first order ode lie symmetry calculated ode . . . . . . 211

Internal problem ID [5102]
Internal file name [OUTPUT/4595_Sunday_June_05_2022_03_01_31_PM_93079431/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(3x+ 3y − 4) y′ + y = −x

2.16.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x+ y

3x+ 3y − 4
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ y) (b3 − a2)
3x+ 3y − 4 − (x+ y)2 a3

(3x+ 3y − 4)2

−
(
− 1
3x+ 3y − 4 + 3y + 3x

(3x+ 3y − 4)2
)
(xa2 + ya3 + a1)

−
(
− 1
3x+ 3y − 4 + 3y + 3x

(3x+ 3y − 4)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x2a2 − x2a3 + 9x2b2 − 3x2b3 + 6xya2 − 2xya3 + 18xyb2 − 6xyb3 + 3y2a2 − y2a3 + 9y2b2 − 3y2b3 − 8xa2 − 28xb2 + 4xb3 − 4ya2 − 4ya3 − 24yb2 − 4a1 − 4b1 + 16b2
(3x+ 3y − 4)2

= 0

Setting the numerator to zero gives

(6E)3x2a2−x2a3+9x2b2−3x2b3+6xya2−2xya3+18xyb2−6xyb3+3y2a2−y2a3
+9y2b2−3y2b3−8xa2−28xb2+4xb3−4ya2−4ya3−24yb2−4a1−4b1+16b2
= 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)3a2v21 + 6a2v1v2 + 3a2v22 − a3v
2
1 − 2a3v1v2 − a3v

2
2 + 9b2v21

+ 18b2v1v2 + 9b2v22 − 3b3v21 − 6b3v1v2 − 3b3v22 − 8a2v1 − 4a2v2
− 4a3v2 − 28b2v1 − 24b2v2 + 4b3v1 − 4a1 − 4b1 + 16b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(3a2−a3+9b2−3b3) v21+(6a2−2a3+18b2−6b3) v1v2+(−8a2−28b2+4b3) v1
+ (3a2 − a3 + 9b2 − 3b3) v22 + (−4a2 − 4a3 − 24b2) v2 − 4a1 − 4b1 + 16b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a1 − 4b1 + 16b2 = 0
−8a2 − 28b2 + 4b3 = 0
−4a2 − 4a3 − 24b2 = 0

3a2 − a3 + 9b2 − 3b3 = 0
6a2 − 2a3 + 18b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = −b1 + 4b2
a2 = −3b2
a3 = −3b2
b1 = b1

b2 = b2

b3 = b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
− x+ y

3x+ 3y − 4

)
(−1)

= 2x+ 2y − 4
3x+ 3y − 4

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x+2y−4
3x+3y−4

dy

Which results in

S = 3y
2 + ln (x+ y − 2)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ y

3x+ 3y − 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x+ y − 2

Sy =
3
2 + 1

x+ y − 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3y
2 + ln (x+ y − 2) = −x

2 + c1

Which simplifies to

3y
2 + ln (x+ y − 2) = −x

2 + c1

Which gives

y =
2LambertW

(
3 ex−3+c1

2

)
3 − x+ 2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+y
3x+3y−4

dS
dR

= −1
2

R = x

S = 3y
2 + ln (x+ y − 2)

Summary
The solution(s) found are the following

(1)y =
2LambertW

(
3 ex−3+c1

2

)
3 − x+ 2
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Figure 51: Slope field plot

Verification of solutions

y =
2LambertW

(
3 ex−3+c1

2

)
3 − x+ 2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve((3*x+3*y(x)-4)*diff(y(x),x)=-(x+y(x)),y(x), singsol=all)� �

y(x) =
2LambertW

(
3 e−3+x−c1

2

)
3 − x+ 2

3 Solution by Mathematica
Time used: 3.675 (sec). Leaf size: 33� �
DSolve[(3*x+3*y[x]-4)*y'[x]==-(x+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
3W

(
−ex−1+c1

)
− x+ 2

y(x) → 2− x
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2.17 problem 17
2.17.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 219

Internal problem ID [5103]
Internal file name [OUTPUT/4596_Sunday_June_05_2022_03_01_32_PM_57694632/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`], [

_Abel , `2nd type `, `class B`]]

−xy2 −
(
x+ yx2) y′ = −x

2.17.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(xy + 1) dy =
(
−y2 + 1

)
dx(

y2 − 1
)
dx+(xy + 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2 − 1
N(x, y) = xy + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2 − 1

)
= 2y

And
∂N

∂x
= ∂

∂x
(xy + 1)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy + 1((2y)− (y))

= y

xy + 1
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2 − 1((y)− (2y))

= − y

y2 − 1
Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− y

y2−1 dy

The result of integrating gives

µ = e−
ln(y−1)

2 − ln(1+y)
2

= 1√
y − 1

√
1 + y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1√
y − 1

√
1 + y

(
y2 − 1

)
= y2 − 1√

y − 1
√
1 + y

And

N = µN

= 1√
y − 1

√
1 + y

(xy + 1)

= xy + 1√
y − 1

√
1 + y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

y2 − 1√
y − 1

√
1 + y

)
+
(

xy + 1√
y − 1

√
1 + y

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2 − 1√

y − 1
√
1 + y

dx

(3)φ = (y2 − 1)x√
y − 1

√
1 + y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2yx√

y − 1
√
1 + y

− (y2 − 1)x
2 (y − 1)

3
2
√
1 + y

− (y2 − 1)x
2
√
y − 1 (1 + y)

3
2
+ f ′(y)

= yx√
y − 1

√
1 + y

+ f ′(y)

But equation (2) says that ∂φ
∂y

= xy+1√
y−1

√
1+y

. Therefore equation (4) becomes

(5)xy + 1√
y − 1

√
1 + y

= yx√
y − 1

√
1 + y

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
y − 1

√
1 + y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1√
y − 1

√
1 + y

)
dy

f(y) =
√

(y − 1) (1 + y) ln
(
y +

√
y2 − 1

)
√
y − 1

√
1 + y

+ c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (y2 − 1)x√
y − 1

√
1 + y

+
√

(y − 1) (1 + y) ln
(
y +

√
y2 − 1

)
√
y − 1

√
1 + y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(y2 − 1)x√
y − 1

√
1 + y

+
√

(y − 1) (1 + y) ln
(
y +

√
y2 − 1

)
√
y − 1

√
1 + y

Summary
The solution(s) found are the following

(1)(y2 − 1)x√
y − 1

√
1 + y

+
√

(y − 1) (1 + y) ln
(
y +

√
y2 − 1

)
√
y − 1

√
1 + y

= c1

Figure 52: Slope field plot
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Verification of solutions

(y2 − 1)x√
y − 1

√
1 + y

+
√

(y − 1) (1 + y) ln
(
y +

√
y2 − 1

)
√
y − 1

√
1 + y

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve((x-x*y(x)^2)=(x+x^2*y(x))*diff(y(x),x),y(x), singsol=all)� �

x+

√
y (x)2 − 1 ln

(
y(x) +

√
y (x)2 − 1

)
(y (x)− 1) (y (x) + 1) − c1√

y (x)− 1
√
y (x) + 1

= 0

3 Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 55� �
DSolve[(x-x*y[x]^2)==(x+x^2*y[x])*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve

x = −
2 arctan

(√
1−y(x)2
y(x)+1

)
√

1− y(x)2
+ c1√

1− y(x)2
, y(x)
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2.18 problem 18
2.18.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 225
2.18.2 Solving as first order ode lie symmetry calculated ode . . . . . . 228

Internal problem ID [5104]
Internal file name [OUTPUT/4597_Sunday_June_05_2022_03_01_34_PM_27322655/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

−y + (4y + x− 1) y′ = 1− x

2.18.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −X − x0 + Y (X) + y0 + 1

4Y (X) + 4y0 +X + x0 − 1

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −X + Y (X)

4Y (X) +X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −X + Y

4Y +X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −X + Y and N = 4Y + X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u− 1

4u+ 1
du
dX =

u(X)−1
4u(X)+1 − u(X)

X

Or
d

dX
u(X)−

u(X)−1
4u(X)+1 − u(X)

X
= 0

Or
4
(

d

dX
u(X)

)
Xu(X) +

(
d

dX
u(X)

)
X + 4u(X)2 + 1 = 0

Or
1 +X(4u(X) + 1)

(
d

dX
u(X)

)
+ 4u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 4u2 + 1
X (4u+ 1)
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Where f(X) = − 1
X

and g(u) = 4u2+1
4u+1 . Integrating both sides gives

1
4u2+1
4u+1

du = − 1
X

dX

∫ 1
4u2+1
4u+1

du =
∫

− 1
X

dX

ln (4u2 + 1)
2 + arctan (2u)

2 = − ln (X) + c2

The solution is

ln
(
4u(X)2 + 1

)
2 + arctan (2u(X))

2 + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

4Y (X)2
X2 + 1

)
2 +

arctan
(

2Y (X)
X

)
2 + ln (X)− c2 = 0

Using the solution for Y (X)

ln
(

4Y (X)2
X2 + 1

)
2 +

arctan
(

2Y (X)
X

)
2 + ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 1

Then the solution in y becomes

ln
(

4y2
(x−1)2 + 1

)
2 +

arctan
( 2y
x−1

)
2 + ln (x− 1)− c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

4y2
(x−1)2 + 1

)
2 +

arctan
( 2y
x−1

)
2 + ln (x− 1)− c2 = 0

Figure 53: Slope field plot

Verification of solutions

ln
(

4y2
(x−1)2 + 1

)
2 +

arctan
( 2y
x−1

)
2 + ln (x− 1)− c2 = 0

Verified OK.

2.18.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x+ y + 1
4y + x− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−x+ y + 1) (b3 − a2)

4y + x− 1 − (−x+ y + 1)2 a3
(4y + x− 1)2

−
(
− 1
4y + x− 1 − −x+ y + 1

(4y + x− 1)2
)
(xa2 + ya3 + a1)

−
(

1
4y + x− 1 − 4(−x+ y + 1)

(4y + x− 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 − 4x2b2 − x2b3 + 8xya2 + 2xya3 + 8xyb2 − 8xyb3 − 4y2a2 + 4y2a3 + 16y2b2 + 4y2b3 − 2xa2 + 2xa3 − 5xb1 + 3xb2 + 2xb3 + 5ya1 − 3ya2 − 2ya3 − 8yb2 + 8yb3 + a2 − a3 + 5b1 + b2 − b3

(4y + x− 1)2
= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 − 4x2b2 − x2b3 + 8xya2 + 2xya3 + 8xyb2 − 8xyb3 − 4y2a2
+ 4y2a3 + 16y2b2 + 4y2b3 − 2xa2 + 2xa3 − 5xb1 + 3xb2 + 2xb3
+ 5ya1 − 3ya2 − 2ya3 − 8yb2 + 8yb3 + a2 − a3 + 5b1 + b2 − b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)a2v
2
1 + 8a2v1v2 − 4a2v22 − a3v

2
1 + 2a3v1v2 + 4a3v22 − 4b2v21 + 8b2v1v2

+ 16b2v22 − b3v
2
1 − 8b3v1v2 + 4b3v22 + 5a1v2 − 2a2v1 − 3a2v2 + 2a3v1 − 2a3v2

− 5b1v1 + 3b2v1 − 8b2v2 + 2b3v1 + 8b3v2 + a2 − a3 + 5b1 + b2 − b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(a2 − a3 − 4b2 − b3) v21 + (8a2 + 2a3 + 8b2 − 8b3) v1v2
+ (−2a2 + 2a3 − 5b1 + 3b2 + 2b3) v1 + (−4a2 + 4a3 + 16b2 + 4b3) v22
+ (5a1 − 3a2 − 2a3 − 8b2 + 8b3) v2 + a2 − a3 + 5b1 + b2 − b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−4a2 + 4a3 + 16b2 + 4b3 = 0
a2 − a3 − 4b2 − b3 = 0

8a2 + 2a3 + 8b2 − 8b3 = 0
5a1 − 3a2 − 2a3 − 8b2 + 8b3 = 0

−2a2 + 2a3 − 5b1 + 3b2 + 2b3 = 0
a2 − a3 + 5b1 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3

a2 = b3

a3 = −4b2
b1 = −b2

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −4y
η = x− 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x− 1−
(
−x+ y + 1
4y + x− 1

)
(−4y)

= x2 + 4y2 − 2x+ 1
4y + x− 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+4y2−2x+1
4y+x−1

dy

Which results in

S = ln (x2 + 4y2 − 2x+ 1)
2 +

2(x− 1) arctan
( 8y
4x−4

)
4x− 4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x+ y + 1
4y + x− 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x− y − 1
x2 + 4y2 − 2x+ 1

Sy =
4y + x− 1

x2 + 4y2 − 2x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (4y2 + x2 − 2x+ 1)
2 +

arctan
( 2y
x−1

)
2 = c1

Which simplifies to

ln (4y2 + x2 − 2x+ 1)
2 +

arctan
( 2y
x−1

)
2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x+y+1
4y+x−1

dS
dR

= 0

R = x

S = ln (x2 + 4y2 − 2x+ 1)
2 +

arctan
( 2y
x−1

)
2

Summary
The solution(s) found are the following

(1)ln (4y2 + x2 − 2x+ 1)
2 +

arctan
( 2y
x−1

)
2 = c1
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Figure 54: Slope field plot

Verification of solutions

ln (4y2 + x2 − 2x+ 1)
2 +

arctan
( 2y
x−1

)
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 29� �
dsolve((x-y(x)-1)+(4*y(x)+x-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
tan

(
RootOf

(
ln
(
sec (_Z)2

)
− _Z+ 2 ln (x− 1) + 2c1

))
(x− 1)

2

3 Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 58� �
DSolve[(x-y[x]-1)+(4*y[x]+x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
2y(x)− 2x+ 2
4y(x) + x− 1

)
+ 2 log

(
4
5

(
4y(x)2
(x− 1)2 + 1

))
+ 4 log(x− 1) + 5c1 = 0, y(x)

]
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2.19 problem 19
2.19.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 236
2.19.2 Solving as first order ode lie symmetry calculated ode . . . . . . 240

Internal problem ID [5105]
Internal file name [OUTPUT/4598_Sunday_June_05_2022_03_01_35_PM_86667519/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

3y + (7y − 3x+ 3) y′ = 7x− 7

2.19.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 3Y (X) + 3y0 − 7X − 7x0 + 7

7Y (X) + 7y0 − 3X − 3x0 + 3

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = 0

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 3Y (X)− 7X

7Y (X)− 3X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −3Y − 7X
7Y − 3X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 3Y − 7X and N = −7Y + 3X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u+ 7

7u− 3
du
dX =

−3u(X)+7
7u(X)−3 − u(X)

X

Or
d

dX
u(X)−

−3u(X)+7
7u(X)−3 − u(X)

X
= 0

Or
7
(

d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + 7u(X)2 − 7 = 0

Or
−7 +X(7u(X)− 3)

(
d

dX
u(X)

)
+ 7u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 7(u2 − 1)
X (7u− 3)
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Where f(X) = − 7
X

and g(u) = u2−1
7u−3 . Integrating both sides gives

1
u2−1
7u−3

du = − 7
X

dX

∫ 1
u2−1
7u−3

du =
∫

− 7
X

dX

2 ln (u− 1) + 5 ln (u+ 1) = −7 ln (X) + c2

Raising both side to exponential gives

e2 ln(u−1)+5 ln(u+1) = e−7 ln(X)+c2

Which simplifies to

(u− 1)2 (u+ 1)5 = c3
X7

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
Using the solution for Y (X)

Y (X) = RootOf
(
X7 + 3X6_Z+X5_Z2 − 5X4_Z3 − 5X3_Z4 +X2_Z5 + 3X _Z6 + _Z7 − c3

)
And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y

X = x+ 1

Then the solution in y becomes

y = RootOf
(
_Z7 + (−3 + 3x)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4 +

(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2 +

(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 − c3 + 7x− 1

)
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Summary
The solution(s) found are the following

y = RootOf
(
_Z7 + (−3 + 3x)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

(1)

Figure 55: Slope field plot

Verification of solutions

y = RootOf
(
_Z7 + (−3 + 3x)_Z6 +

(
x2 − 2x+ 1

)
_Z5 +

(
−5x3 + 15x2 − 15x+ 5

)
_Z4

+
(
−5x4 + 20x3 − 30x2 + 20x− 5

)
_Z3 +

(
x5 − 5x4 + 10x3 − 10x2 + 5x− 1

)
_Z2

+
(
3x6 − 18x5 + 45x4 − 60x3 + 45x2 − 18x+ 3

)
_Z+ x7 − 7x6 + 21x5 − 35x4

+ 35x3 − 21x2 − c3 + 7x− 1
)

Verified OK.
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2.19.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −3y − 7x+ 7
7y − 3x+ 3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(3y − 7x+ 7) (b3 − a2)

7y − 3x+ 3 − (3y − 7x+ 7)2 a3
(7y − 3x+ 3)2

−
(

7
7y − 3x+ 3 − 3(3y − 7x+ 7)

(7y − 3x+ 3)2
)
(xa2 + ya3 + a1)

−
(
− 3
7y − 3x+ 3 + 21y − 49x+ 49

(7y − 3x+ 3)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3 + 21y2a2 − 49y2a3 + 49y2b2 − 21y2b3 − 42xa2 + 98xa3 + 40xb1 − 58xb2 + 42xb3 − 40ya1 + 58ya2 − 42ya3 + 42yb2 − 98yb3 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3
(−7y + 3x− 3)2

= 0

Setting the numerator to zero gives

(6E)21x2a2 − 49x2a3 + 49x2b2 − 21x2b3 − 98xya2 + 42xya3 − 42xyb2 + 98xyb3
+21y2a2−49y2a3+49y2b2−21y2b3−42xa2+98xa3+40xb1−58xb2+42xb3
−40ya1+58ya2−42ya3+42yb2−98yb3+21a2−49a3−40b1+9b2−21b3 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
21a2v21 − 98a2v1v2 + 21a2v22 − 49a3v21 + 42a3v1v2 − 49a3v22 + 49b2v21
− 42b2v1v2 + 49b2v22 − 21b3v21 + 98b3v1v2 − 21b3v22 − 40a1v2
− 42a2v1 + 58a2v2 + 98a3v1 − 42a3v2 + 40b1v1 − 58b2v1 + 42b2v2
+ 42b3v1 − 98b3v2 + 21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(21a2 − 49a3 + 49b2 − 21b3) v21 + (−98a2 + 42a3 − 42b2 + 98b3) v1v2
+ (−42a2 + 98a3 + 40b1 − 58b2 + 42b3) v1 + (21a2 − 49a3 + 49b2 − 21b3) v22
+(−40a1+58a2−42a3+42b2−98b3) v2+21a2−49a3−40b1+9b2−21b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−98a2 + 42a3 − 42b2 + 98b3 = 0
21a2 − 49a3 + 49b2 − 21b3 = 0

−40a1 + 58a2 − 42a3 + 42b2 − 98b3 = 0
−42a2 + 98a3 + 40b1 − 58b2 + 42b3 = 0

21a2 − 49a3 − 40b1 + 9b2 − 21b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3

a2 = b3

a3 = b2

b1 = −b2

b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = x− 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x− 1−
(
−3y − 7x+ 7
7y − 3x+ 3

)
(y)

= 3x2 − 3y2 − 6x+ 3
−7y + 3x− 3

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2−3y2−6x+3
−7y+3x−3

dy

Which results in

S = 5 ln (x+ y − 1)
3 + 2 ln (−x+ y + 1)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y − 7x+ 7
7y − 3x+ 3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 5
3x− 3 + 3y + 2

3x− 3y − 3

Sy =
5

3x− 3 + 3y − 2
3x− 3y − 3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1

Which simplifies to

5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y−7x+7
7y−3x+3

dS
dR

= 0

R = x

S = 5 ln (x+ y − 1)
3 + 2 ln (−x+ y + 1)

3

Summary
The solution(s) found are the following

(1)5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1
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Figure 56: Slope field plot

Verification of solutions

5 ln (x− 1 + y)
3 + 2 ln (−x+ y + 1)

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.422 (sec). Leaf size: 1814� �
dsolve((3*y(x)-7*x+7)+(7*y(x)-3*x+3)*diff(y(x),x)=0,y(x), singsol=all)� �

Expression too large to display

3 Solution by Mathematica
Time used: 60.706 (sec). Leaf size: 7785� �
DSolve[(3*y[x]-7*x+7)+(7*y[x]-3*x+3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Too large to display
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2.20 problem 20
2.20.1 Solving as first order ode lie symmetry calculated ode . . . . . . 247
2.20.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 253

Internal problem ID [5106]
Internal file name [OUTPUT/4599_Sunday_June_05_2022_03_01_37_PM_51431466/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

y(xy + 1) + x
(
1 + xy + y2x2) y′ = 0

2.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(xy + 1)
x (y2x2 + xy + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(xy + 1) (b3 − a2)
x (y2x2 + xy + 1) − y2(xy + 1)2 a3

x2 (y2x2 + xy + 1)2

−
(
− y2

x (y2x2 + xy + 1) +
y(xy + 1)

x2 (y2x2 + xy + 1)

+ y(xy + 1) (2y2x+ y)
x (y2x2 + xy + 1)2

)
(xa2 + ya3 + a1)−

(
− xy + 1
x (y2x2 + xy + 1)

− y

y2x2 + xy + 1 + y(xy + 1) (2y x2 + x)
x (y2x2 + xy + 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x6y4b2 + 2x5y3b2 − x4y4a2 − x4y4b3 − 2x3y5a3 − 2x3y4a1 + 3x4y2b2 − 2x3y3a2 − 2x3y3b3 − 5x2y4a3 − 4x2y3a1 + 4x3yb2 − 4x y3a3 + 2x2yb1 − 2x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1

x2 (y2x2 + xy + 1)2
= 0

Setting the numerator to zero gives

(6E)x6y4b2 + 2x5y3b2 − x4y4a2 − x4y4b3 − 2x3y5a3 − 2x3y4a1
+ 3x4y2b2 − 2x3y3a2 − 2x3y3b3 − 5x2y4a3 − 4x2y3a1 + 4x3yb2
− 4x y3a3 + 2x2yb1 − 2x y2a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
6
1v

4
2 − a2v

4
1v

4
2 − 2a3v31v52 + 2b2v51v32 − b3v

4
1v

4
2 − 2a1v31v42 − 2a2v31v32

− 5a3v21v42 + 3b2v41v22 − 2b3v31v32 − 4a1v21v32 − 4a3v1v32 + 4b2v31v2
− 2a1v1v22 + 2b1v21v2 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1v

4
2 + 2b2v51v32 + (−a2 − b3) v41v42 + 3b2v41v22 − 2a3v31v52 − 2a1v31v42

+ (−2a2 − 2b3) v31v32 + 4b2v31v2 − 5a3v21v42 − 4a1v21v32 + 2b1v21v2
+ 2b2v21 − 4a3v1v32 − 2a1v1v22 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−4a1 = 0
−2a1 = 0
−a1 = 0
−5a3 = 0
−4a3 = 0
−2a3 = 0
2b1 = 0
2b2 = 0
3b2 = 0
4b2 = 0

−2a2 − 2b3 = 0
−a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y(xy + 1)
x (y2x2 + xy + 1)

)
(−x)

= y3x2

y2x2 + xy + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3x2

y2x2+xy+1

dy

Which results in

S = ln (y)− 1
2y2x2 − 1

yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(xy + 1)
x (y2x2 + xy + 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = xy + 1
y2x3

Sy =
y2x2 + xy + 1

y3x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y) y2x2 − 2xy − 1
2y2x2 = c1

Which simplifies to

2 ln (y) y2x2 − 2xy − 1
2y2x2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y(xy+1)
x(y2x2+xy+1)

dS
dR

= 0

R = x

S = 2 ln (y) y2x2 − 2xy − 1
2y2x2

Summary
The solution(s) found are the following

(1)2 ln (y) y2x2 − 2xy − 1
2y2x2 = c1
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Figure 57: Slope field plot

Verification of solutions

2 ln (y) y2x2 − 2xy − 1
2y2x2 = c1

Verified OK.

2.20.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
y2x2 + xy + 1

))
dy = (−y(xy + 1)) dx

(y(xy + 1)) dx+
(
x
(
y2x2 + xy + 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(xy + 1)
N(x, y) = x

(
y2x2 + xy + 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(xy + 1))

= 2xy + 1

And
∂N

∂x
= ∂

∂x

(
x
(
y2x2 + xy + 1

))
= 3y2x2 + 2xy + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (y2x2 + xy + 1)
(
(2xy + 1)−

(
y2x2 + xy + 1 + x

(
2y2x+ y

)))
= − 3y2x

y2x2 + xy + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y (xy + 1)
((
y2x2 + xy + 1 + x

(
2y2x+ y

))
− (2xy + 1)

)
= 3y x2

xy + 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (y2x2 + xy + 1 + x(2y2x+ y))− (2xy + 1)
x (y (xy + 1))− y (x (y2x2 + xy + 1))

= − 3
yx

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(y(xy + 1))

= xy + 1
y2x3

And

N = µN

= 1
x3y3

(
x
(
y2x2 + xy + 1

))
= y2x2 + xy + 1

y3x2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

xy + 1
y2x3

)
+
(
y2x2 + xy + 1

y3x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy + 1
y2x3 dx

(3)φ = −2xy − 1
2y2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

y2x
− −2xy − 1

y3x2 + f ′(y)

= xy + 1
y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y2x2+xy+1
y3x2 . Therefore equation (4) becomes

(5)y2x2 + xy + 1
y3x2 = xy + 1

y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −2xy − 1
2y2x2 + ln (y) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−2xy − 1
2y2x2 + ln (y)

Summary
The solution(s) found are the following

(1)−2xy − 1
2y2x2 + ln (y) = c1

Figure 58: Slope field plot

Verification of solutions

−2xy − 1
2y2x2 + ln (y) = c1

Verified OK.

258



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 38� �
dsolve(y(x)*(x*y(x)+1)+x*(1+x*y(x)+x^2*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−2 ln(x)e2_Z+2c1e2_Z+2_Z e2_Z−2 e_Z−1

)
x

3 Solution by Mathematica
Time used: 0.11 (sec). Leaf size: 30� �
DSolve[y[x]*(x*y[x]+1)+x*(1+x*y[x]+x^2*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
− 1

2x2 − y(x)
x

y(x)2 + log(y(x)) = c1, y(x)
]
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2.21 problem 21
2.21.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 260

Internal problem ID [5107]
Internal file name [OUTPUT/4600_Sunday_June_05_2022_03_01_38_PM_45463758/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

y + y′ − y3x = 0

2.21.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= x y3 − y

This is a Bernoulli ODE.
y′ = −y + xy3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
f1(x) = x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
y2

+ x (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x) + x

w′ = 2w − 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
q(x) = −2x

Hence the ode is

w′(x)− 2w(x) = −2x
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The integrating factor µ is

µ = e
∫
(−2)dx

= e−2x

The ode becomes
d
dx(µw) = (µ) (−2x)

d
dx
(
e−2xw

)
=
(
e−2x) (−2x)

d
(
e−2xw

)
=
(
−2x e−2x) dx

Integrating gives

e−2xw =
∫

−2x e−2x dx

e−2xw = (1 + 2x) e−2x

2 + c1

Dividing both sides by the integrating factor µ = e−2x results in

w(x) = e2x(1 + 2x) e−2x

2 + c1e2x

which simplifies to

w(x) = 1
2 + x+ c1e2x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= 1
2 + x+ c1e2x

Solving for y gives

y(x) = 2√
2 + 4c1e2x + 4x

y(x) = − 2√
2 + 4c1e2x + 4x

Summary
The solution(s) found are the following

(1)y = 2√
2 + 4c1e2x + 4x

(2)y = − 2√
2 + 4c1e2x + 4x
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Figure 59: Slope field plot

Verification of solutions

y = 2√
2 + 4c1e2x + 4x

Verified OK.

y = − 2√
2 + 4c1e2x + 4x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve(diff(y(x),x)+y(x)=x*y(x)^3,y(x), singsol=all)� �

y(x) = − 2√
2 + 4 e2xc1 + 4x

y(x) = 2√
2 + 4 e2xc1 + 4x

3 Solution by Mathematica
Time used: 2.704 (sec). Leaf size: 50� �
DSolve[y'[x]+y[x]==x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x+ c1e2x + 1

2

y(x) → 1√
x+ c1e2x + 1

2

y(x) → 0
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2.22 problem 22
2.22.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 265

Internal problem ID [5108]
Internal file name [OUTPUT/4601_Sunday_June_05_2022_03_01_39_PM_35987126/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Bernoulli]

y + y′ − y4ex = 0

2.22.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= −y + y4ex

This is a Bernoulli ODE.
y′ = −y + exy4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
f1(x) = ex

n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= − 1
y3

+ ex (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = −w(x) + ex

w′ = 3w − 3 ex (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −3
q(x) = −3 ex

Hence the ode is

w′(x)− 3w(x) = −3 ex
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The integrating factor µ is

µ = e
∫
(−3)dx

= e−3x

The ode becomes
d
dx(µw) = (µ) (−3 ex)

d
dx
(
e−3xw

)
=
(
e−3x) (−3 ex)

d
(
e−3xw

)
=
(
−3 e−2x) dx

Integrating gives

e−3xw =
∫

−3 e−2x dx

e−3xw = 3 e−2x

2 + c1

Dividing both sides by the integrating factor µ = e−3x results in

w(x) = 3 e3xe−2x

2 + e3xc1

which simplifies to

w(x) = 3 ex
2 + e3xc1

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= 3 ex
2 + e3xc1

Solving for y gives

y(x) =
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 e−x

2c1e2x + 3

y(x) =
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 (

i
√
3− 1

)
e−x

4c1e2x + 6

y(x) = −

(
1 + i

√
3
)
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 e−x

4c1e2x + 6
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Summary
The solution(s) found are the following

(1)y =
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 e−x

2c1e2x + 3

(2)y =
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 (

i
√
3− 1

)
e−x

4c1e2x + 6

(3)y = −

(
1 + i

√
3
)
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 e−x

4c1e2x + 6

Figure 60: Slope field plot
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Verification of solutions

y =
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 e−x

2c1e2x + 3

Verified OK.

y =
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 (

i
√
3− 1

)
e−x

4c1e2x + 6

Verified OK.

y = −

(
1 + i

√
3
)
2 1

3

(
e2x(2c1e2x + 3)2

) 1
3 e−x

4c1e2x + 6

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 138� �
dsolve(diff(y(x),x)+y(x)=y(x)^4*exp(x),y(x), singsol=all)� �

y(x) =
2 1

3

(
e2x(2 e2xc1 + 3)2

) 1
3 e−x

2 e2xc1 + 3

y(x) = −

(
1 + i

√
3
)
2 1

3

(
e2x(2 e2xc1 + 3)2

) 1
3 e−x

4 e2xc1 + 6

y(x) =
2 1

3

(
e2x(2 e2xc1 + 3)2

) 1
3 (

i
√
3− 1

)
e−x

4 e2xc1 + 6
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3 Solution by Mathematica
Time used: 4.751 (sec). Leaf size: 90� �
DSolve[y'[x]+y[x]==y[x]^4*Exp[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3
√
−2

3
√
ex (3 + 2c1e2x)

y(x) → 1
3

√
3ex
2 + c1e3x

y(x) → (−1)2/3

3

√
3ex
2 + c1e3x

y(x) → 0
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2.23 problem 23
2.23.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 271

Internal problem ID [5109]
Internal file name [OUTPUT/4602_Sunday_June_05_2022_03_01_43_PM_1868891/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

2y′ + y − y3(x− 1) = 0

2.23.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −1
2y +

1
2x y

3 − 1
2y

3

This is a Bernoulli ODE.
y′ = −1

2y +
x

2 − 1
2y

3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
2

f1(x) =
x

2 − 1
2

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= − 1
2y2 + x

2 − 1
2 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −w(x)

2 + x

2 − 1
2

w′ = w + 1− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
q(x) = 1− x

Hence the ode is

w′(x)− w(x) = 1− x
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The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes
d
dx(µw) = (µ) (1− x)

d
dx
(
e−xw

)
=
(
e−x
)
(1− x)

d
(
e−xw

)
=
(
−(x− 1) e−x

)
dx

Integrating gives

e−xw =
∫

−(x− 1) e−x dx

e−xw = x e−x + c1

Dividing both sides by the integrating factor µ = e−x results in

w(x) = exx e−x + c1ex

which simplifies to

w(x) = x+ c1ex

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= x+ c1ex

Solving for y gives

y(x) = 1√
x+ c1ex

y(x) = − 1√
x+ c1ex

Summary
The solution(s) found are the following

(1)y = 1√
x+ c1ex

(2)y = − 1√
x+ c1ex
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Figure 61: Slope field plot

Verification of solutions

y = 1√
x+ c1ex

Verified OK.

y = − 1√
x+ c1ex

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(2*diff(y(x),x)+y(x)=y(x)^3*(x-1),y(x), singsol=all)� �

y(x) = 1√
exc1 + x

y(x) = − 1√
exc1 + x

3 Solution by Mathematica
Time used: 2.721 (sec). Leaf size: 40� �
DSolve[2*y'[x]+y[x]==y[x]^3*(x-1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
x+ c1ex

y(x) → 1√
x+ c1ex

y(x) → 0
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2.24 problem 24
2.24.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 276

Internal problem ID [5110]
Internal file name [OUTPUT/4603_Sunday_June_05_2022_03_01_45_PM_10672043/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

y′ − 2y tan (x)− tan (x)2 y2 = 0

2.24.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= 2y tan (x) + tan (x)2 y2

This is a Bernoulli ODE.

y′ = 2 tan (x) y + tan (x)2 y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = 2 tan (x)
f1(x) = tan (x)2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 2 tan (x)
y

+ tan (x)2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = 2 tan (x)w(x) + tan (x)2

w′ = −2 tan (x)w − tan (x)2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2 tan (x)
q(x) = − tan (x)2

Hence the ode is

w′(x) + 2 tan (x)w(x) = − tan (x)2

The integrating factor µ is

µ = e
∫
2 tan(x)dx

= 1
cos (x)2
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The ode becomes

d
dx(µw) = (µ)

(
− tan (x)2

)
d
dx

(
w

cos (x)2
)

=
(

1
cos (x)2

)(
− tan (x)2

)
d
(

w

cos (x)2
)

=
(
− tan (x)2 sec (x)2

)
dx

Integrating gives

w

cos (x)2
=
∫

− tan (x)2 sec (x)2 dx

w

cos (x)2
= −tan (x)3

3 + c1

Dividing both sides by the integrating factor µ = 1
cos(x)2 results in

w(x) = −cos (x)2 tan (x)3

3 + c1 cos (x)2

which simplifies to

w(x) = cos (x)2
(
−tan (x)3

3 + c1

)

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= cos (x)2

(
−tan (x)3

3 + c1

)

Or

y = 1
cos (x)2

(
− tan(x)3

3 + c1
)

Summary
The solution(s) found are the following

(1)y = 1
cos (x)2

(
− tan(x)3

3 + c1
)
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Figure 62: Slope field plot

Verification of solutions

y = 1
cos (x)2

(
− tan(x)3

3 + c1
)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve(diff(y(x),x)-2*y(x)*tan(x)=y(x)^2*tan(x)^2,y(x), singsol=all)� �

y(x) = − 3 sec (x)2

tan (x)3 − 3c1

3 Solution by Mathematica
Time used: 0.519 (sec). Leaf size: 31� �
DSolve[y'[x]-2*y[x]*Tan[x]==y[x]^2*Tan[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
− sin2(x) tan(x) + 3c1 cos2(x)

y(x) → 0
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2.25 problem 25
2.25.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 281

Internal problem ID [5111]
Internal file name [OUTPUT/4604_Sunday_June_05_2022_03_01_46_PM_93199263/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

y′ + y tan (x)− y3 sec (x)4 = 0

2.25.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= −y tan (x) + y3 sec (x)4

This is a Bernoulli ODE.

y′ = − tan (x) y + sec (x)4 y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − tan (x)
f1(x) = sec (x)4

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= −tan (x)
y2

+ sec (x)4 (4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = − tan (x)w(x) + sec (x)4

w′ = 2 tan (x)w − 2 sec (x)4 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2 tan (x)
q(x) = −2 sec (x)4

Hence the ode is

w′(x)− 2 tan (x)w(x) = −2 sec (x)4
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The integrating factor µ is

µ = e
∫
−2 tan(x)dx

= cos (x)2

The ode becomes

d
dx(µw) = (µ)

(
−2 sec (x)4

)
d
dx
(
cos (x)2w

)
=
(
cos (x)2

) (
−2 sec (x)4

)
d
(
cos (x)2w

)
=
(
−2 sec (x)2

)
dx

Integrating gives

cos (x)2w =
∫

−2 sec (x)2 dx

cos (x)2w = −2 tan (x) + c1

Dividing both sides by the integrating factor µ = cos (x)2 results in

w(x) = −2 sec (x)2 tan (x) + c1 sec (x)2

which simplifies to

w(x) = sec (x)2 (−2 tan (x) + c1)

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= sec (x)2 (−2 tan (x) + c1)

Solving for y gives

y(x) =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

cos (x) c1 − 2 sin (x)

y(x) =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

− cos (x) c1 + 2 sin (x)
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Summary
The solution(s) found are the following

(1)y =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

cos (x) c1 − 2 sin (x)

(2)y =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

− cos (x) c1 + 2 sin (x)

Figure 63: Slope field plot

Verification of solutions

y =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

cos (x) c1 − 2 sin (x)

Verified OK.

y =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

− cos (x) c1 + 2 sin (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 68� �
dsolve(diff(y(x),x)+y(x)*tan(x)=y(x)^3*sec(x)^4,y(x), singsol=all)� �

y(x) =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

− cos (x) c1 + 2 sin (x)

y(x) =

√
cos (x)5 (cos (x) c1 − 2 sin (x)) sec (x)

cos (x) c1 − 2 sin (x)

3 Solution by Mathematica
Time used: 4.061 (sec). Leaf size: 48� �
DSolve[y'[x]+y[x]*Tan[x]==y[x]^3*Sec[x]^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1√
sec2(x)(−2 tan(x) + c1)

y(x) → 1√
sec2(x)(−2 tan(x) + c1)

y(x) → 0
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2.26 problem 26
2.26.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 286
2.26.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 288
2.26.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 292
2.26.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 297

Internal problem ID [5112]
Internal file name [OUTPUT/4605_Sunday_June_05_2022_03_01_49_PM_88824046/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x2 + 1

)
y′ − xy = 1

2.26.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 − 1
q(x) = − 1

x2 − 1

Hence the ode is

y′ + xy

x2 − 1 = − 1
x2 − 1
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The integrating factor µ is

µ = e
∫

x
x2−1dx

= e
ln(x−1)

2 + ln(x+1)
2

Which simplifies to
µ =

√
x− 1

√
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
− 1
x2 − 1

)
d
dx

(√
x− 1

√
x+ 1 y

)
=
(√

x− 1
√
x+ 1

)(
− 1
x2 − 1

)
d
(√

x− 1
√
x+ 1 y

)
=
(
−
√
x− 1

√
x+ 1

x2 − 1

)
dx

Integrating gives

√
x− 1

√
x+ 1 y =

∫
−
√
x− 1

√
x+ 1

x2 − 1 dx

√
x− 1

√
x+ 1 y = −

√
x+ 1

√
x− 1 ln

(
x+

√
x2 − 1

)
√
x2 − 1

+ c1

Dividing both sides by the integrating factor µ =
√
x− 1

√
x+ 1 results in

y = −
ln
(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = −
ln
(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1
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Figure 64: Slope field plot

Verification of solutions

y = −
ln
(
x+

√
x2 − 1

)
√
x2 − 1

+ c1√
x− 1

√
x+ 1

Verified OK.

2.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy + 1
x2 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−
ln(x−1)

2 − ln(x+1)
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−
ln(x−1)

2 − ln(x+1)
2

dy

Which results in

S = eln
(√

x−1
)
+ln

(√
x+1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy + 1
x2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x− 1

√
x+ 1

Sy =
√
x− 1

√
x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1√

x− 1
√
x+ 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1√

R− 1
√
R + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −
√

(R− 1) (R + 1) ln
(
R +

√
R2 − 1

)
√
R− 1

√
R + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y
√
x+ 1

√
x− 1 = −

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Which simplifies to

y
√
x+ 1

√
x− 1 = −

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
√
x− 1

√
x+ 1

+ c1

Which gives

y =
c1
√
x− 1

√
x+ 1−

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
x2 − 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −xy+1
x2−1

dS
dR

= − 1√
R−1

√
R+1

R = x

S =
√
x− 1

√
x+ 1 y

291



Summary
The solution(s) found are the following

(1)y =
c1
√
x− 1

√
x+ 1−

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
x2 − 1

Figure 65: Slope field plot

Verification of solutions

y =
c1
√
x− 1

√
x+ 1−

√
(x− 1) (x+ 1) ln

(
x+

√
x2 − 1

)
x2 − 1

Verified OK.

2.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + 1

)
dy = (xy + 1) dx

(−xy − 1) dx+
(
−x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy − 1
N(x, y) = −x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y
(−xy − 1)

= −x

And

∂N

∂x
= ∂

∂x

(
−x2 + 1

)
= −2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x2 − 1((−x)− (−2x))

= − x

x2 − 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2−1 dx

The result of integrating gives

µ = e−
ln(x−1)

2 − ln(x+1)
2

= 1√
x− 1

√
x+ 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x− 1

√
x+ 1

(−xy − 1)

= − xy + 1√
x− 1

√
x+ 1

294



And

N = µN

= 1√
x− 1

√
x+ 1

(
−x2 + 1

)
= −x2 + 1√

x− 1
√
x+ 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− xy + 1√
x− 1

√
x+ 1

)
+
(

−x2 + 1√
x− 1

√
x+ 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− xy + 1√

x− 1
√
x+ 1

dx

(3)φ = −
√
x− 1

√
x+ 1

(
y
√
x2 − 1 + ln

(
x+

√
x2 − 1

))
√
x2 − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −

√
x− 1

√
x+ 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2+1√
x−1

√
x+1 . Therefore equation (4) becomes

(5)−x2 + 1√
x− 1

√
x+ 1

= −
√
x− 1

√
x+ 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
√
x− 1

√
x+ 1

(
y
√
x2 − 1 + ln

(
x+

√
x2 − 1

))
√
x2 − 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
√
x− 1

√
x+ 1

(
y
√
x2 − 1 + ln

(
x+

√
x2 − 1

))
√
x2 − 1

The solution becomes

y = −
√
x+ 1

√
x− 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Summary
The solution(s) found are the following

(1)y = −
√
x+ 1

√
x− 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1
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Figure 66: Slope field plot

Verification of solutions

y = −
√
x+ 1

√
x− 1 ln

(
x+

√
x2 − 1

)
+ c1

√
x2 − 1

√
x2 − 1

√
x− 1

√
x+ 1

Verified OK.

2.26.4 Maple step by step solution

Let’s solve
(−x2 + 1) y′ − xy = 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2−1 −
1

x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2−1 = − 1
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + xy

x2−1

)
= − µ(x)

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2−1

• Solve to find the integrating factor
µ(x) =

√
x− 1

√
x+ 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)

x2−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)

x2−1dx+ c1

• Solve for y

y =
∫
− µ(x)

x2−1dx+c1

µ(x)

• Substitute µ(x) =
√
x− 1

√
x+ 1

y =
∫
−

√
x−1

√
x+1

x2−1 dx+c1
√
x−1

√
x+1

• Evaluate the integrals on the rhs

y =
−

√
x+1

√
x−1 ln

(
x+

√
x2−1

)
√

x2−1
+c1

√
x−1

√
x+1

• Simplify

y =
−
√
x+1

√
x−1 ln

(
x+

√
x2−1

)
+c1

√
x2−1

√
x2−1

√
x−1

√
x+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 46� �
dsolve((1-x^2)*diff(y(x),x)=1+x*y(x),y(x), singsol=all)� �

y(x) = −
√
x2 − 1 ln

(
x+

√
x2 − 1

)
(x− 1) (x+ 1) + c1√

x− 1
√
x+ 1

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 54� �
DSolve[(1-x^2)*y'[x]==1+x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
log
(
1− x√

x2−1

)
− log

(
x√
x2−1 + 1

)
+ 2c1

2
√
x2 − 1
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2.27 problem 27
2.27.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 300
2.27.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 302
2.27.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 306
2.27.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 310

Internal problem ID [5113]
Internal file name [OUTPUT/4606_Sunday_June_05_2022_03_01_50_PM_99954190/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xyy′ − (x+ 1)
√

y − 1 = 0

2.27.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= (x+ 1)
√
y − 1

yx

Where f(x) = x+1
x

and g(y) =
√
y−1
y

. Integrating both sides gives

1
√
y−1
y

dy = x+ 1
x

dx

∫ 1
√
y−1
y

dy =
∫

x+ 1
x

dx

300



2
√
y − 1 (y + 2)

3 = x+ ln (x) + c1

The solution is
2
√
y − 1 (2 + y)

3 − x− ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)2
√
y − 1 (2 + y)

3 − x− ln (x)− c1 = 0

Figure 67: Slope field plot

Verification of solutions

2
√
y − 1 (2 + y)

3 − x− ln (x)− c1 = 0

Verified OK.
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2.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (x+ 1)
√
y − 1

yx

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 42: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

x+ 1
η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
x+1

dx

Which results in

S = x+ ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (x+ 1)
√
y − 1

yx
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1 + 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y√

y − 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R√

R− 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2
√
R− 1 (R + 2)

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x+ ln (x) = 2
√
y − 1 (2 + y)

3 + c1

Which simplifies to

x+ ln (x) = 2
√
y − 1 (2 + y)

3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (x+1)
√
y−1

yx
dS
dR

= R√
R−1

R = y

S = x+ ln (x)

Summary
The solution(s) found are the following

(1)x+ ln (x) = 2
√
y − 1 (2 + y)

3 + c1
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Figure 68: Slope field plot

Verification of solutions

x+ ln (x) = 2
√
y − 1 (2 + y)

3 + c1

Verified OK.

2.27.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y√
y − 1

)
dy =

(
x+ 1
x

)
dx(

−x+ 1
x

)
dx+

(
y√
y − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x+ 1
x

N(x, y) = y√
y − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x+ 1

x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
y√
y − 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x+ 1

x
dx

(3)φ = −x− ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= y√
y−1 . Therefore equation (4) becomes

(5)y√
y − 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y√
y − 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y√
y − 1

)
dy

f(y) = 2
√
y − 1 (y + 2)

3 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x− ln (x) + 2
√
y − 1 (y + 2)

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− ln (x) + 2
√
y − 1 (y + 2)

3

Summary
The solution(s) found are the following

(1)2
√
y − 1 (2 + y)

3 − x− ln (x) = c1

Figure 69: Slope field plot

Verification of solutions

2
√
y − 1 (2 + y)

3 − x− ln (x) = c1

Verified OK.
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2.27.4 Maple step by step solution

Let’s solve
xyy′ − (x+ 1)

√
y − 1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y√
y−1 = x+1

x

• Integrate both sides with respect to x∫
y′y√
y−1dx =

∫
x+1
x
dx+ c1

• Evaluate integral
2(y−1)

3
2

3 + 2
√
y − 1 = x+ ln (x) + c1

• Solve for y

y =

(
6 ln(x)+6c1+6x+2

√
16+9 ln(x)2+18c1 ln(x)+18 ln(x)x+9c21+18c1x+9x2

) 1
3

2 − 2(
6 ln(x)+6c1+6x+2

√
16+9 ln(x)2+18c1 ln(x)+18 ln(x)x+9c21+18c1x+9x2

) 1
3

2

+ 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(x*y(x)*diff(y(x),x)-(1+x)*sqrt(y(x)-1)=0,y(x), singsol=all)� �

(−2y(x)− 4)
√

y (x)− 1
3 + x+ c1 + ln (x) = 0
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3 Solution by Mathematica
Time used: 5.614 (sec). Leaf size: 582� �
DSolve[x*y[x]*y'[x]-(1+x)*Sqrt[y[x]-1]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
2

3

√
9x2 + 3

√
(x+ log(x) + c1)2

(
9x2 + 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 16 + 9c12

)
+ 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 8 + 9c12

+ 2
3

√
9x2 + 3

√
(x+ log(x) + c1)2

(
9x2 + 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 16 + 9c12

)
+ 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 8 + 9c12

− 1
y(x) → 1

4i
(√

3

+i
)

3

√
9x2 + 3

√
(x+ log(x) + c1)2

(
9x2 + 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 16 + 9c12

)
+ 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 8 + 9c12

+ −1− i
√
3

3

√
9x2 + 3

√
(x+ log(x) + c1)2

(
9x2 + 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 16 + 9c12

)
+ 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 8 + 9c12

− 1
y(x) → −1

4i
(√

3

−i
)

3

√
9x2 + 3

√
(x+ log(x) + c1)2

(
9x2 + 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 16 + 9c12

)
+ 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 8 + 9c12

+ −1 + i
√
3

3

√
9x2 + 3

√
(x+ log(x) + c1)2

(
9x2 + 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 16 + 9c12

)
+ 9 log2(x) + 18c1x+ 18(x+ c1) log(x) + 8 + 9c12

− 1
y(x) → 1
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2.28 problem 28
2.28.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 312
2.28.2 Solving as first order ode lie symmetry calculated ode . . . . . . 314

Internal problem ID [5114]
Internal file name [OUTPUT/4607_Sunday_June_05_2022_03_01_51_PM_81823814/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

−2xy + 5y2 −
(
x2 + 2xy + y2

)
y′ = −x2

2.28.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−2x2u(x) + 5u(x)2 x2 −
(
x2 + 2x2u(x) + u(x)2 x2) (u′(x)x+ u(x)) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − (u− 1)3

x (u+ 1)2
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Where f(x) = − 1
x
and g(u) = (u−1)3

(u+1)2 . Integrating both sides gives

1
(u−1)3

(u+1)2
du = −1

x
dx

∫ 1
(u−1)3

(u+1)2
du =

∫
−1
x
dx

ln (u− 1)− 4
u− 1 − 2

(u− 1)2
= − ln (x) + c2

The solution is

ln (u(x)− 1)− 4
u (x)− 1 − 2

(u (x)− 1)2
+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(y
x
− 1
)
− 4

y
x
− 1 − 2(

y
x
− 1
)2 + ln (x)− c2 = 0

ln
(
−x+ y

x

)
− 4x

−x+ y
− 2x2

(−x+ y)2
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
−x+ y

x

)
− 4x

−x+ y
− 2x2

(−x+ y)2
+ ln (x)− c2 = 0
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Figure 70: Slope field plot

Verification of solutions

ln
(
−x+ y

x

)
− 4x

−x+ y
− 2x2

(−x+ y)2
+ ln (x)− c2 = 0

Verified OK.

2.28.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − 2xy + 5y2
x2 + 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x2 − 2xy + 5y2) (b3 − a2)

x2 + 2xy + y2
− (x2 − 2xy + 5y2)2 a3

(x2 + 2xy + y2)2

−
(

−2y + 2x
x2 + 2xy + y2

− (x2 − 2xy + 5y2) (2y + 2x)
(x2 + 2xy + y2)2

)
(xa2 + ya3 + a1)

−
(

−2x+ 10y
x2 + 2xy + y2

− (x2 − 2xy + 5y2) (2y + 2x)
(x2 + 2xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a2 + x4a3 − 5x4b2 − x4b3 + 4x3ya2 − 4x3ya3 + 4x3yb2 − 4x3yb3 − 6x2y2a2 + 18x2y2a3 + 6x2y2b2 + 6x2y2b3 − 4x y3a2 − 28x y3a3 − 4x y3b2 + 4x y3b3 + 5y4a2 + 13y4a3 − y4b2 − 5y4b3 − 4x3b1 + 4x2ya1 + 8x2yb1 − 8x y2a1 + 12x y2b1 − 12y3a1
(x2 + 2xy + y2)2

= 0

Setting the numerator to zero gives

(6E)
−x4a2 − x4a3 + 5x4b2 + x4b3 − 4x3ya2 + 4x3ya3 − 4x3yb2
+ 4x3yb3 + 6x2y2a2 − 18x2y2a3 − 6x2y2b2 − 6x2y2b3 + 4x y3a2
+ 28x y3a3 + 4x y3b2 − 4x y3b3 − 5y4a2 − 13y4a3 + y4b2 + 5y4b3
+ 4x3b1 − 4x2ya1 − 8x2yb1 + 8x y2a1 − 12x y2b1 + 12y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a2v

4
1 − 4a2v31v2 + 6a2v21v22 + 4a2v1v32 − 5a2v42 − a3v

4
1 + 4a3v31v2

− 18a3v21v22 + 28a3v1v32 − 13a3v42 + 5b2v41 − 4b2v31v2 − 6b2v21v22
+ 4b2v1v32 + b2v

4
2 + b3v

4
1 + 4b3v31v2 − 6b3v21v22 − 4b3v1v32 + 5b3v42

− 4a1v21v2 + 8a1v1v22 + 12a1v32 + 4b1v31 − 8b1v21v2 − 12b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)
(−a2 − a3 + 5b2 + b3) v41 + (−4a2 + 4a3 − 4b2 + 4b3) v31v2
+ 4b1v31 + (6a2 − 18a3 − 6b2 − 6b3) v21v22 + (−4a1 − 8b1) v21v2
+ (4a2 + 28a3 + 4b2 − 4b3) v1v32 + (8a1 − 12b1) v1v22
+ (−5a2 − 13a3 + b2 + 5b3) v42 + 12a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

12a1 = 0
4b1 = 0

−4a1 − 8b1 = 0
8a1 − 12b1 = 0

−5a2 − 13a3 + b2 + 5b3 = 0
−4a2 + 4a3 − 4b2 + 4b3 = 0

−a2 − a3 + 5b2 + b3 = 0
4a2 + 28a3 + 4b2 − 4b3 = 0
6a2 − 18a3 − 6b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 − 2xy + 5y2
x2 + 2xy + y2

)
(x)

= −x3 + 3y x2 − 3y2x+ y3

x2 + 2xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3+3y x2−3y2x+y3

x2+2xy+y2

dy

Which results in

S = − 2x2

(−x+ y)2
+ ln (−x+ y)− 4x

−x+ y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − 2xy + 5y2
x2 + 2xy + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 − 2xy + 5y2

(x− y)3

Sy = −(x+ y)2

(x− y)3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(x− y)2 ln (−x+ y) + 2x(x− 2y)
(x− y)2

= c1

Which simplifies to

(x− y)2 ln (−x+ y) + 2x(x− 2y)
(x− y)2

= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2−2xy+5y2
x2+2xy+y2

dS
dR

= 0

R = x

S = (x− y)2 ln (−x+ y) + 2x(x− 2y)
(x− y)2

Summary
The solution(s) found are the following

(1)(x− y)2 ln (−x+ y) + 2x(x− 2y)
(x− y)2

= c1
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Figure 71: Slope field plot

Verification of solutions

(x− y)2 ln (−x+ y) + 2x(x− 2y)
(x− y)2

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 35� �
dsolve((x^2-2*x*y(x)+5*y(x)^2)=(x^2+2*x*y(x)+y(x)^2)*diff(y(x),x),y(x), singsol=all)� �

y(x) = x
(
1 + eRootOf

(
ln(x)e2_Z+c1e2_Z+_Z e2_Z−4 e_Z−2

))
3 Solution by Mathematica
Time used: 0.343 (sec). Leaf size: 41� �
DSolve[(x^2-2*x*y[x]+5*y[x]^2)==(x^2+2*x*y[x]+y[x]^2)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve

 2− 4y(x)
x(

y(x)
x

− 1
)2 + log

(
y(x)
x

− 1
)

= − log(x) + c1, y(x)
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2.29 problem 29
2.29.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 322
2.29.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 323
2.29.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 328
2.29.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 331

Internal problem ID [5115]
Internal file name [OUTPUT/4608_Sunday_June_05_2022_03_01_52_PM_37720997/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_Bernoulli]

y′ − y cot (x)− y2 sec (x)2 = 0

With initial conditions [
y
(π
4

)
= −1

]
2.29.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= y cot (x) + y2 sec (x)2

The x domain of f(x, y) when y = −1 is

{
−∞ ≤ x < π_Z101, π_Z101 < x <

1
2π + π_Z102, 12π + π_Z102 < x ≤ ∞

}
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But the point x0 = π
4 is not inside this domain. Hence existence and uniqueness

theorem does not apply. There could be infinite number of solutions, or one solution or
no solution at all.

2.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y cot (x) + y2 sec (x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 45: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

sin(x)

dy

Which results in

S = −sin (x)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y cot (x) + y2 sec (x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −cos (x)
y

Sy =
sin (x)
y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sec (x) tan (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R) tan (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sec (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−sin (x)
y

= sec (x) + c1

Which simplifies to

−sin (x)
y

= sec (x) + c1

Which gives

y = − sin (x)
sec (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y cot (x) + y2 sec (x)2 dS
dR

= sec (R) tan (R)

R = x

S = −sin (x)
y
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Initial conditions are used to solve for c1. Substituting x = π
4 and y = −1 in the above

solution gives an equation to solve for the constant of integration.

−1 = −
√
2

2
√
2 + 2c1

c1 = −
√
2
2

Substituting c1 found above in the general solution gives

y = − 2 sin (x)
2 sec (x)−

√
2

Summary
The solution(s) found are the following

(1)y = − 2 sin (x)
2 sec (x)−

√
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − 2 sin (x)
2 sec (x)−

√
2

Verified OK.
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2.29.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= y cot (x) + y2 sec (x)2

This is a Bernoulli ODE.
y′ = cot (x) y + sec (x)2 y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = cot (x)
f1(x) = sec (x)2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= cot (x)
y

+ sec (x)2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)
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Substituting equations (5) and (6) into equation (4) gives

−w′(x) = cot (x)w(x) + sec (x)2

w′ = − cot (x)w − sec (x)2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = cot (x)
q(x) = − sec (x)2

Hence the ode is

w′(x) + cot (x)w(x) = − sec (x)2

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)

The ode becomes
d
dx(µw) = (µ)

(
− sec (x)2

)
d
dx(sin (x)w) = (sin (x))

(
− sec (x)2

)
d(sin (x)w) = (− sec (x) tan (x)) dx

Integrating gives

sin (x)w =
∫

− sec (x) tan (x) dx

sin (x)w = − sec (x) + c1

Dividing both sides by the integrating factor µ = sin (x) results in

w(x) = − sec (x) csc (x) + c1 csc (x)

which simplifies to

w(x) = csc (x) (− sec (x) + c1)
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Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= csc (x) (− sec (x) + c1)

Or

y = 1
csc (x) (− sec (x) + c1)

Initial conditions are used to solve for c1. Substituting x = π
4 and y = −1 in the above

solution gives an equation to solve for the constant of integration.

−1 = −
√
2

2
√
2− 2c1

c1 =
√
2
2

Substituting c1 found above in the general solution gives

y = − 2 sin (x)
2 sec (x)−

√
2

Summary
The solution(s) found are the following

(1)y = − 2 sin (x)
2 sec (x)−

√
2

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = − 2 sin (x)
2 sec (x)−

√
2

Verified OK.

2.29.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y cot (x) + y2 sec (x)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y cot (x) + y2 sec (x)2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = cot (x) and f2(x) = sec (x)2. Let

y = −u′

f2u

= −u′

sec (x)2 u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2 sec (x)2 tan (x)

f1f2 = cot (x) sec (x)2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

sec (x)2 u′′(x)−
(
2 sec (x)2 tan (x) + cot (x) sec (x)2

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1 + sec (x) c2

The above shows that
u′(x) = sec (x) tan (x) c2

Using the above in (1) gives the solution

y = − tan (x) c2
sec (x) (c1 + sec (x) c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − sin (x)
c3 + sec (x)

Initial conditions are used to solve for c3. Substituting x = π
4 and y = −1 in the above

solution gives an equation to solve for the constant of integration.

−1 = −
√
2

2c3 + 2
√
2

c3 = −
√
2
2

Substituting c3 found above in the general solution gives

y = − 2 sin (x)
2 sec (x)−

√
2

Summary
The solution(s) found are the following

(1)y = − 2 sin (x)
2 sec (x)−

√
2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − 2 sin (x)
2 sec (x)−

√
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.89 (sec). Leaf size: 18� �
dsolve([diff(y(x),x)-y(x)*cot(x)=y(x)^2*sec(x)^2,y(1/4*Pi) = -1],y(x), singsol=all)� �

y(x) = 2 sin (x)√
2− 2 sec (x)
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3 Solution by Mathematica
Time used: 0.46 (sec). Leaf size: 22� �
DSolve[{y'[x]-y[x]*Cot[x]==y[x]^2*Sec[x]^2,{y[Pi/4]==-1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(2x)√
2 cos(x)− 2
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2.30 problem 30
2.30.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 335
2.30.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 337
2.30.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 339
2.30.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 340
2.30.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 344
2.30.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 348

Internal problem ID [5116]
Internal file name [OUTPUT/4609_Sunday_June_05_2022_03_01_55_PM_74585404/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y +
(
x2 − 4x

)
y′ = 0

2.30.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y

x (−4 + x)
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Where f(x) = − 1
x(−4+x) and g(y) = y. Integrating both sides gives

1
y
dy = − 1

x (−4 + x) dx∫ 1
y
dy =

∫
− 1
x (−4 + x) dx

ln (y) = ln (x)
4 − ln (−4 + x)

4 + c1

y = e
ln(x)

4 − ln(−4+x)
4 +c1

= c1e
ln(x)

4 − ln(−4+x)
4

Which simplifies to

y = c1x
1
4

(−4 + x)
1
4

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(−4 + x)
1
4

Figure 75: Slope field plot
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Verification of solutions

y = c1x
1
4

(−4 + x)
1
4

Verified OK.

2.30.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x (−4 + x)

q(x) = 0

Hence the ode is

y′ + y

x (−4 + x) = 0

The integrating factor µ is

µ = e
∫ 1

x(−4+x)dx

= e−
ln(x)

4 + ln(−4+x)
4

Which simplifies to

µ = (−4 + x)
1
4

x
1
4

The ode becomes

d
dxµy = 0

d
dx

(
(−4 + x)

1
4 y

x
1
4

)
= 0

Integrating gives

(−4 + x)
1
4 y

x
1
4

= c1
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Dividing both sides by the integrating factor µ = (−4+x)
1
4

x
1
4

results in

y = c1x
1
4

(−4 + x)
1
4

Summary
The solution(s) found are the following

(1)y = c1x
1
4

(−4 + x)
1
4

Figure 76: Slope field plot

Verification of solutions

y = c1x
1
4

(−4 + x)
1
4

Verified OK.
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2.30.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x+
(
x2 − 4x

)
(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(x− 3)
x (−4 + x)

Where f(x) = − x−3
x(−4+x) and g(u) = u. Integrating both sides gives

1
u
du = − x− 3

x (−4 + x) dx∫ 1
u
du =

∫
− x− 3
x (−4 + x) dx

ln (u) = −3 ln (x)
4 − ln (−4 + x)

4 + c2

u = e−
3 ln(x)

4 − ln(−4+x)
4 +c2

= c2e−
3 ln(x)

4 − ln(−4+x)
4

Which simplifies to

u(x) = c2

x
3
4 (−4 + x)

1
4

Therefore the solution y is

y = ux

= x
1
4 c2

(−4 + x)
1
4

Summary
The solution(s) found are the following

(1)y = x
1
4 c2

(−4 + x)
1
4
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Figure 77: Slope field plot

Verification of solutions

y = x
1
4 c2

(−4 + x)
1
4

Verified OK.

2.30.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y

x (−4 + x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 47: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e
ln(x)

4 − ln(−4+x)
4 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e
ln(x)

4 − ln(−4+x)
4

dy

Which results in

S = e
ln
(

1

x
1
4

)
+ln

(
(−4+x)

1
4
)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

x (−4 + x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x
5
4 (−4 + x)

3
4

Sy =
(−4 + x)

1
4

x
1
4

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(−4 + x)
1
4 y

x
1
4

= c1

Which simplifies to

(−4 + x)
1
4 y

x
1
4

= c1

Which gives

y = c1x
1
4

(−4 + x)
1
4

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x(−4+x)

dS
dR

= 0

R = x

S = (−4 + x)
1
4 y

x
1
4
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Summary
The solution(s) found are the following

(1)y = c1x
1
4

(−4 + x)
1
4

Figure 78: Slope field plot

Verification of solutions

y = c1x
1
4

(−4 + x)
1
4

Verified OK.

2.30.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1

x (−4 + x)

)
dx(

− 1
x (−4 + x)

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x (−4 + x)

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x (−4 + x)

)
= 0

And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x (−4 + x) dx

(3)φ = ln (x)
4 − ln (−4 + x)

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x)
4 − ln (−4 + x)

4 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x)
4 − ln (−4 + x)

4 − ln (y)

The solution becomes
y = e

ln(x)
4 − ln(−4+x)

4 −c1

Summary
The solution(s) found are the following

(1)y = e
ln(x)

4 − ln(−4+x)
4 −c1
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Figure 79: Slope field plot

Verification of solutions

y = e
ln(x)

4 − ln(−4+x)
4 −c1

Verified OK.

2.30.6 Maple step by step solution

Let’s solve
y + (x2 − 4x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= − 1

x2−4x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
− 1

x2−4xdx+ c1

• Evaluate integral

348



ln (y) = ln(x)
4 − ln(−4+x)

4 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(y(x)+(x^2-4*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x
1
4

(x− 4)
1
4

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 27� �
DSolve[y[x]+(x^2-4*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
4
√
x

4
√
4− x

y(x) → 0
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2.31 problem 31
2.31.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 350
2.31.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 351
2.31.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 353
2.31.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 357
2.31.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 361

Internal problem ID [5117]
Internal file name [OUTPUT/4610_Sunday_June_05_2022_03_01_55_PM_57704246/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − y tan (x) = cos (x)− 2 sin (x)x

With initial conditions [
y
(π
6

)
= 0
]

2.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = − tan (x)
q(x) = cos (x)− 2 sin (x)x
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Hence the ode is

y′ − y tan (x) = cos (x)− 2 sin (x)x

The domain of p(x) = − tan (x) is{
x <

1
2π + π_Z103∨ 1

2π + π_Z103 < x

}

And the point x0 = π
6 is inside this domain. The domain of q(x) = cos (x)− 2 sin (x)x

is
{−∞ < x < ∞}

And the point x0 = π
6 is also inside this domain. Hence solution exists and is unique.

2.31.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
− tan(x)dx

= cos (x)

The ode becomes
d
dx(µy) = (µ) (cos (x)− 2 sin (x)x)

d
dx(y cos (x)) = (cos (x)) (cos (x)− 2 sin (x)x)

d(y cos (x)) = ((cos (x)− 2 sin (x)x) cos (x)) dx

Integrating gives

y cos (x) =
∫

(cos (x)− 2 sin (x)x) cos (x) dx

y cos (x) = cos (x)2 x+ c1

Dividing both sides by the integrating factor µ = cos (x) results in

y = sec (x) cos (x)2 x+ c1 sec (x)

which simplifies to

y = cos (x)x+ c1 sec (x)
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Initial conditions are used to solve for c1. Substituting x = π
6 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0 =
√
3π
12 + 2c1

√
3

3

c1 = −π

8

Substituting c1 found above in the general solution gives

y = sec (x) cos (x)2 x− sec (x) π
8

Summary
The solution(s) found are the following

(1)y = sec (x) cos (x)2 x− sec (x) π
8

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sec (x) cos (x)2 x− sec (x) π
8

Verified OK.
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2.31.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y tan (x) + cos (x)− 2 sin (x)x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 50: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
cos (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
cos(x)

dy

Which results in

S = y cos (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y tan (x) + cos (x)− 2 sin (x)x

354



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y sin (x)
Sy = cos (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (cos (x)− 2 sin (x)x) cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (cos (R)− 2 sin (R)R) cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R)2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y cos (x) = cos (x)2 x+ c1

Which simplifies to

y cos (x) = cos (x)2 x+ c1

Which gives

y = cos (x)2 x+ c1
cos (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y tan (x) + cos (x)− 2 sin (x)x dS
dR

= (cos (R)− 2 sin (R)R) cos (R)

R = x

S = y cos (x)

Initial conditions are used to solve for c1. Substituting x = π
6 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0 =
√
3π
12 + 2c1

√
3

3

c1 = −π

8

Substituting c1 found above in the general solution gives

y = sec (x) cos (x)2 x− sec (x) π
8

Summary
The solution(s) found are the following

(1)y = sec (x) cos (x)2 x− sec (x) π
8
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = sec (x) cos (x)2 x− sec (x) π
8

Verified OK.

2.31.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (y tan (x) + cos (x)− 2 sin (x)x) dx
(−y tan (x)− cos (x) + 2 sin (x)x) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y tan (x)− cos (x) + 2 sin (x)x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y tan (x)− cos (x) + 2 sin (x)x)

= − tan (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((− tan (x))− (0))
= − tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− tan(x) dx

The result of integrating gives

µ = eln(cos(x))

= cos (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= cos (x) (−y tan (x)− cos (x) + 2 sin (x)x)
= (2 cos (x)x− y) sin (x)− cos (x)2

And

N = µN

= cos (x) (1)
= cos (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(2 cos (x)x− y) sin (x)− cos (x)2
)
+ (cos (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(2 cos (x)x− y) sin (x)− cos (x)2 dx

(3)φ = − cos (x) (cos (x)x− y) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (x). Therefore equation (4) becomes

(5)cos (x) = cos (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − cos (x) (cos (x)x− y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − cos (x) (cos (x)x− y)

The solution becomes

y = cos (x)2 x+ c1
cos (x)

Initial conditions are used to solve for c1. Substituting x = π
6 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0 =
√
3π
12 + 2c1

√
3

3

c1 = −π

8
Substituting c1 found above in the general solution gives

y = sec (x) cos (x)2 x− sec (x) π
8
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Summary
The solution(s) found are the following

(1)y = sec (x) cos (x)2 x− sec (x) π
8

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sec (x) cos (x)2 x− sec (x) π
8

Verified OK.

2.31.5 Maple step by step solution

Let’s solve[
y′ − y tan (x) = cos (x)− 2 sin (x)x, y

(
π
6

)
= 0
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y tan (x) + cos (x)− 2 sin (x)x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y tan (x) = cos (x)− 2 sin (x)x
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• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y tan (x)) = µ(x) (cos (x)− 2 sin (x)x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (cos (x)− 2 sin (x)x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (cos (x)− 2 sin (x)x) dx+ c1

• Solve for y

y =
∫
µ(x)(cos(x)−2 sin(x)x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)

y =
∫
(cos(x)−2 sin(x)x) cos(x)dx+c1

cos(x)

• Evaluate the integrals on the rhs

y = cos(x)2x+c1
cos(x)

• Simplify
y = cos (x)x+ c1 sec (x)

• Use initial condition y
(
π
6

)
= 0

0 =
√
3π
12 + 2c1

√
3

3

• Solve for c1
c1 = −π

8

• Substitute c1 = −π
8 into general solution and simplify

y = cos (x)x− sec(x)π
8

• Solution to the IVP
y = cos (x)x− sec(x)π

8
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)-y(x)*tan(x)=cos(x)-2*x*sin(x),y(1/6*Pi) = 0],y(x), singsol=all)� �

y(x) = cos (x)x− π sec (x)
8

3 Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 25� �
DSolve[{y'[x]-y[x]*Tan[x]==Cos[x]-2*x*Sin[x],{y[Pi/6]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8(4x+ 4x cos(2x)− π) sec(x)
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2.32 problem 32
2.32.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 364
2.32.2 Solving as first order ode lie symmetry calculated ode . . . . . . 366
2.32.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 372

Internal problem ID [5118]
Internal file name [OUTPUT/4611_Sunday_June_05_2022_03_01_57_PM_6702736/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y′ − 2xy + y2

x2 + 2xy = 0

2.32.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− 2x2u(x) + u(x)2 x2

x2 + 2x2u (x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u− 1)
x (2u+ 1)
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Where f(x) = − 1
x
and g(u) = u(u−1)

2u+1 . Integrating both sides gives

1
u(u−1)
2u+1

du = −1
x
dx

∫ 1
u(u−1)
2u+1

du =
∫

−1
x
dx

3 ln (u− 1)− ln (u) = − ln (x) + c2

Raising both side to exponential gives

e3 ln(u−1)−ln(u) = e− ln(x)+c2

Which simplifies to

(u− 1)3

u
= c3

x

The solution is
(u(x)− 1)3

u (x) = c3
x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y
x
− 1
)3

x

y
= c3

x

(−x+ y)3

x2y
= c3

x

Which simplifies to

−(x− y)3

xy
= c3

Summary
The solution(s) found are the following

(1)−(x− y)3

xy
= c3
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Figure 83: Slope field plot

Verification of solutions

−(x− y)3

xy
= c3

Verified OK.

2.32.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(y + 2x)
x (2y + x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

366



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(y + 2x) (b3 − a2)

x (2y + x) − y2(y + 2x)2 a3
x2 (2y + x)2

−
(

2y
x (2y + x) −

y(y + 2x)
x2 (2y + x) −

y(y + 2x)
x (2y + x)2

)
(xa2 + ya3 + a1)

−
(

y + 2x
(2y + x)x + y

x (2y + x) −
2y(y + 2x)
x (2y + x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4b2 − 2x3yb2 + 3x2y2a2 + 2x2y2a3 − 2x2y2b2 − 3x2y2b3 + 2x y3a3 − y4a3 + 2x3b1 − 2x2ya1 + 2x2yb1 − 2x y2a1 + 2x y2b1 − 2y3a1
x2 (2y + x)2

= 0

Setting the numerator to zero gives

(6E)−x4b2 + 2x3yb2 − 3x2y2a2 − 2x2y2a3 + 2x2y2b2 + 3x2y2b3 − 2x y3a3
+ y4a3 − 2x3b1 + 2x2ya1 − 2x2yb1 + 2x y2a1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−3a2v21v22 − 2a3v21v22 − 2a3v1v32 + a3v
4
2 − b2v

4
1 + 2b2v31v2 + 2b2v21v22

+ 3b3v21v22 + 2a1v21v2 + 2a1v1v22 + 2a1v32 − 2b1v31 − 2b1v21v2 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−b2v
4
1 + 2b2v31v2 − 2b1v31 + (−3a2 − 2a3 + 2b2 + 3b3) v21v22

+ (2a1 − 2b1) v21v2 − 2a3v1v32 + (2a1 − 2b1) v1v22 + a3v
4
2 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
2a1 = 0

−2a3 = 0
−2b1 = 0
−b2 = 0
2b2 = 0

2a1 − 2b1 = 0
−3a2 − 2a3 + 2b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y(y + 2x)
x (2y + x)

)
(x)

= −xy + y2

2y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−xy+y2

2y+x

dy

Which results in

S = − ln (y) + 3 ln (−x+ y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y + 2x)
x (2y + x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
x− y

Sy =
−2y − x

y (x− y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y) + 3 ln (−x+ y) = ln (x) + c1

Which simplifies to

− ln (y) + 3 ln (−x+ y) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y(y+2x)
x(2y+x)

dS
dR

= 1
R

R = x

S = − ln (y) + 3 ln (−x+ y)

Summary
The solution(s) found are the following

(1)− ln (y) + 3 ln (−x+ y) = ln (x) + c1
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Figure 84: Slope field plot

Verification of solutions

− ln (y) + 3 ln (−x+ y) = ln (x) + c1

Verified OK.

2.32.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x(2y + x)) dy = (y(y + 2x)) dx
(−y(y + 2x)) dx+(x(2y + x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(y + 2x)
N(x, y) = x(2y + x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(y + 2x))

= −2y − 2x

And
∂N

∂x
= ∂

∂x
(x(2y + x))

= 2y + 2x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (2y + x)((−2y − 2x)− (2y + 2x))

= −4y − 4x
x (2y + x)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (y + 2x)((2y + 2x)− (−2y − 2x))

= −4y − 4x
y (y + 2x)

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (2y + 2x)− (−2y − 2x)
x (−y (y + 2x))− y (x (2y + x))

= − 4
3yx

Replacing all powers of terms xy by t gives

R = − 4
3t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 4
3t
)
dt
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The result of integrating gives

µ = e−
4 ln(t)

3

= 1
t
4
3

Now t is replaced back with xy giving

µ = 1
(xy)

4
3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
(xy)

4
3
(−y(y + 2x))

= − y + 2x
x (xy)

1
3

And

N = µN

= 1
(xy)

4
3
(x(2y + x))

= 2y + x

y (xy)
1
3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

− y + 2x
x (xy)

1
3

)
+
(

2y + x

y (xy)
1
3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− y + 2x
x (xy)

1
3
dx

(3)φ = −3(x− y)
(xy)

1
3

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3

(xy)
1
3
+ (x− y)x

(xy)
4
3

+ f ′(y)

= 2y + x

y (xy)
1
3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 2y+x

y(xy)
1
3
. Therefore equation (4) becomes

(5)2y + x

y (xy)
1
3
= 2y + x

y (xy)
1
3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −3(x− y)
(xy)

1
3

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −3(x− y)
(xy)

1
3
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Summary
The solution(s) found are the following

(1)−3(x− y)
(xy)

1
3

= c1

Figure 85: Slope field plot

Verification of solutions

−3(x− y)
(xy)

1
3

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 356� �
dsolve(diff(y(x),x)=(2*x*y(x)+y(x)^2)/(x^2+2*x*y(x)),y(x), singsol=all)� �

y(x) =
12 1

3

(
x

(√
3
√

x(27c1x−4)
c1

+ 9x
)
c21

) 1
3

6c1
+ x12 2

3

6
(
x

(√
3
√

x(27c1x−4)
c1

+ 9x
)
c21

) 1
3
+ x

y(x)

=
−

(
i3

5
6+3

1
3
)
2
2
3

(
x

(
√
3
√

27c1x2−4x
c1

+9x
)
c21

) 2
3

6 +
(
2
(
x
(√

3
√

27c1x2−4x
c1

+ 9x
)
c21

) 1
3 + 2 1

3

(
i3 1

6 − 3
2
3
3

))
xc1

2
(
x
(√

3
√

27c1x2−4x
c1

+ 9x
)
c21

) 1
3
c1

y(x) =

−
−

(
i3

5
6−3

1
3
)
2
2
3

(
x

(
√
3
√

27c1x2−4x
c1

+9x
)
c21

) 2
3

6 +
(
−2
(
x
(√

3
√

27c1x2−4x
c1

+ 9x
)
c21

) 1
3 + 2 1

3

(
i3 1

6 + 3
2
3
3

))
xc1

2
(
x
(√

3
√

27c1x2−4x
c1

+ 9x
)
c21

) 1
3
c1
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3 Solution by Mathematica
Time used: 56.42 (sec). Leaf size: 404� �
DSolve[y'[x]==(2*x*y[x]+y[x]^2)/(x^2+2*x*y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x)→−
3

√
2
3e

c1x

3
√√

3
√

e2c1x3 (27x+ 4ec1)− 9ec1x2
+

3
√√

3
√

e2c1x3 (27x+ 4ec1)− 9ec1x2

3
√
232/3

+x

y(x) →
(
1 + i

√
3
)
ec1x

22/3 3
√

3
√
3
√

e2c1x3 (27x+ 4ec1)− 27ec1x2

+
i
(√

3 + i
) 3
√√

3
√

e2c1x3 (27x+ 4ec1)− 9ec1x2

2 3
√
232/3

+ x

y(x) →
(
1− i

√
3
)
ec1x

22/3 3
√

3
√
3
√

e2c1x3 (27x+ 4ec1)− 27ec1x2

−
(
1 + i

√
3
) 3
√√

3
√

e2c1x3 (27x+ 4ec1)− 9ec1x2

2 3
√
232/3

+ x
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2.33 problem 33
2.33.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 380
2.33.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 382
2.33.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 383
2.33.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 387
2.33.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 391

Internal problem ID [5119]
Internal file name [OUTPUT/4612_Sunday_June_05_2022_03_01_58_PM_27349160/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

(
x2 + 1

)
y′ − x(1 + y) = 0

2.33.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(1 + y)
x2 + 1

Where f(x) = x
x2+1 and g(y) = 1 + y. Integrating both sides gives

1
1 + y

dy = x

x2 + 1 dx∫ 1
1 + y

dy =
∫

x

x2 + 1 dx
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ln (1 + y) = ln (x2 + 1)
2 + c1

Raising both side to exponential gives

1 + y = e
ln

(
x2+1

)
2 +c1

Which simplifies to

1 + y = c2
√
x2 + 1

Which simplifies to

y = c2
√
x2 + 1 ec1 − 1

Summary
The solution(s) found are the following

(1)y = c2
√
x2 + 1 ec1 − 1

Figure 86: Slope field plot

Verification of solutions

y = c2
√
x2 + 1 ec1 − 1

Verified OK.
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2.33.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 + 1
q(x) = x

x2 + 1
Hence the ode is

y′ − xy

x2 + 1 = x

x2 + 1
The integrating factor µ is

µ = e
∫
− x

x2+1dx

= 1√
x2 + 1

The ode becomes
d
dx(µy) = (µ)

(
x

x2 + 1

)
d
dx

(
y√

x2 + 1

)
=
(

1√
x2 + 1

)(
x

x2 + 1

)
d
(

y√
x2 + 1

)
=
(

x

(x2 + 1)
3
2

)
dx

Integrating gives
y√

x2 + 1
=
∫

x

(x2 + 1)
3
2
dx

y√
x2 + 1

= − 1√
x2 + 1

+ c1

Dividing both sides by the integrating factor µ = 1√
x2+1 results in

y = −1 + c1
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = −1 + c1
√
x2 + 1
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Figure 87: Slope field plot

Verification of solutions

y = −1 + c1
√
x2 + 1

Verified OK.

2.33.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(1 + y)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2 + 1
dy

Which results in

S = y√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(1 + y)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x2 + 1)
3
2

Sy =
1√

x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x

(x2 + 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

(R2 + 1)
3
2

385



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1√
R2 + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x2 + 1

= − 1√
x2 + 1

+ c1

Which simplifies to

y√
x2 + 1

= − 1√
x2 + 1

+ c1

Which gives

y = −1 + c1
√
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x(1+y)
x2+1

dS
dR

= R

(R2+1)
3
2

R = x

S = y√
x2 + 1
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Summary
The solution(s) found are the following

(1)y = −1 + c1
√
x2 + 1

Figure 88: Slope field plot

Verification of solutions

y = −1 + c1
√
x2 + 1

Verified OK.

2.33.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

1
1 + y

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
1

1 + y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = 1

1 + y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

1 + y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
1+y

. Therefore equation (4) becomes

(5)1
1 + y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
1 + y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
1 + y

)
dy

f(y) = ln (1 + y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (1 + y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (1 + y)

The solution becomes

y = e
ln

(
x2+1

)
2 +c1 − 1

Summary
The solution(s) found are the following

(1)y = e
ln

(
x2+1

)
2 +c1 − 1

Figure 89: Slope field plot
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Verification of solutions

y = e
ln

(
x2+1

)
2 +c1 − 1

Verified OK.

2.33.5 Maple step by step solution

Let’s solve
(x2 + 1) y′ − x(1 + y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y
= x

x2+1

• Integrate both sides with respect to x∫
y′

1+y
dx =

∫
x

x2+1dx+ c1

• Evaluate integral

ln (1 + y) = ln
(
x2+1

)
2 + c1

• Solve for y

y = e
ln

(
x2+1

)
2 +c1 − 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1+x^2)*diff(y(x),x)=x*(1+y(x)),y(x), singsol=all)� �

y(x) =
√
x2 + 1 c1 − 1
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3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 24� �
DSolve[(1+x^2)*y'[x]==x*(1+y[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + c1
√
x2 + 1

y(x) → −1
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2.34 problem 34
2.34.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 393
2.34.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 394
2.34.3 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 396
2.34.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 399
2.34.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 404
2.34.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 408

Internal problem ID [5120]
Internal file name [OUTPUT/4613_Sunday_June_05_2022_03_01_59_PM_61874419/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeMapleC",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + 2y = 3x− 1

With initial conditions

[y(2) = 1]

2.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = 3x− 1
x
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Hence the ode is

y′ + 2y
x

= 3x− 1
x

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 2 is inside this domain. The domain of q(x) = 3x−1
x

is

{x < 0∨ 0 < x}

And the point x0 = 2 is also inside this domain. Hence solution exists and is unique.

2.34.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µy) = (µ)

(
3x− 1

x

)
d
dx
(
y x2) = (x2)(3x− 1

x

)
d
(
y x2) = (3x2 − x

)
dx

Integrating gives

y x2 =
∫

3x2 − x dx

y x2 = x3 − 1
2x

2 + c1

Dividing both sides by the integrating factor µ = x2 results in

y =
x3 − 1

2x
2

x2 + c1
x2

Initial conditions are used to solve for c1. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1
4 + 3

2
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c1 = −2

Substituting c1 found above in the general solution gives

y = 2x3 − x2 − 4
2x2

Summary
The solution(s) found are the following

(1)y = 2x3 − x2 − 4
2x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x3 − x2 − 4
2x2

Verified OK.
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2.34.3 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −2Y (X) + 2y0 − 3X − 3x0 + 1

X + x0

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 0

y0 = −1
2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = −2Y (X)− 3X

X

In canonical form, the ODE is

Y ′ = F (X,Y )

= −2Y − 3X
X

(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = −2Y +3X and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −2u+ 3

du
dX = −3u(X) + 3

X

Or
d

dX
u(X)− −3u(X) + 3

X
= 0
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Or (
d

dX
u(X)

)
X + 3u(X)− 3 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= −3u+ 3
X

Where f(X) = 1
X

and g(u) = −3u+ 3. Integrating both sides gives

1
−3u+ 3 du = 1

X
dX∫ 1

−3u+ 3 du =
∫ 1

X
dX

− ln (u− 1)
3 = ln (X) + c2

Raising both side to exponential gives
1

(u− 1)
1
3
= eln(X)+c2

Which simplifies to
1

(u− 1)
1
3
= c3X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = (c33e3c2X3 + 1) e−3c2

X2c33

Using the solution for Y (X)

Y (X) = (c33e3c2X3 + 1) e−3c2

X2c33

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y − 1
2

X = x

Then the solution in y becomes

y + 1
2 = (c33e3c2x3 + 1) e−3c2

x2c33

Initial conditions are used to solve for c2. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

3
2 = 8 e−3c2e3c2c33 + e−3c2

4c33

c2 = − ln (−2c33)
3

Substituting c2 found above in the general solution gives

y = x3 − 2
x2

Summary
The solution(s) found are the following

(1)y + 1
2 = x3 − 2

x2

(a) Solution plot (b) Slope field plot
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Verification of solutions

y + 1
2 = x3 − 2

x2

Verified OK.

2.34.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y − 3x+ 1
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y − 3x+ 1
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 3x2 − x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 3R2 −R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3 − 1
2R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx2 = x3 − 1
2x

2 + c1

Which simplifies to

yx2 = x3 − 1
2x

2 + c1

Which gives

y = 2x3 − x2 + 2c1
2x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y−3x+1
x

dS
dR

= 3R2 −R

R = x

S = y x2

Initial conditions are used to solve for c1. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1
4 + 3

2
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c1 = −2

Substituting c1 found above in the general solution gives

y = 2x3 − x2 − 4
2x2

Summary
The solution(s) found are the following

(1)y = 2x3 − x2 − 4
2x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x3 − x2 − 4
2x2

Verified OK.
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2.34.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−2y + 3x− 1) dx
(2y − 3x+ 1) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y − 3x+ 1
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2y − 3x+ 1)

= 2

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((2)− (1))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x(2y − 3x+ 1)
= x(2y − 3x+ 1)
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And

N = µN

= x(x)
= x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(x(2y − 3x+ 1)) +
(
x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x(2y − 3x+ 1) dx

(3)φ = −x2(2x− 2y − 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x2(2x− 2y − 1)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2(2x− 2y − 1)
2

The solution becomes

y = 2x3 − x2 + 2c1
2x2

Initial conditions are used to solve for c1. Substituting x = 2 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = c1
4 + 3

2

c1 = −2

Substituting c1 found above in the general solution gives

y = 2x3 − x2 − 4
2x2

Summary
The solution(s) found are the following

(1)y = 2x3 − x2 − 4
2x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x3 − x2 − 4
2x2

Verified OK.

2.34.6 Maple step by step solution

Let’s solve
[xy′ + 2y = 3x− 1, y(2) = 1]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ 3x−1

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= 3x−1

x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= µ(x)(3x−1)

x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′
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• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(3x−1)
x

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(3x−1)
x

dx+ c1

• Solve for y

y =
∫ µ(x)(3x−1)

x
dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
(3x−1)xdx+c1

x2

• Evaluate the integrals on the rhs

y = x3− 1
2x

2+c1
x2

• Use initial condition y(2) = 1
1 = c1

4 + 3
2

• Solve for c1
c1 = −2

• Substitute c1 = −2 into general solution and simplify

y = x3− 1
2x

2−2
x2

• Solution to the IVP

y = x3− 1
2x

2−2
x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve([x*diff(y(x),x)+2*y(x)=3*x-1,y(2) = 1],y(x), singsol=all)� �

y(x) = x− 1
2 − 2

x2

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 15� �
DSolve[{x*y'[x]+2*y[x]==3*x-1,{y[2]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 2
x2 + x− 1

2
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2.35 problem 35
2.35.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 411
2.35.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 412
2.35.3 Solving as first order ode lie symmetry calculated ode . . . . . . 413
2.35.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 418

Internal problem ID [5121]
Internal file name [OUTPUT/4614_Sunday_June_05_2022_03_02_00_PM_29432663/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

x2y′ − y2 + xyy′ = 0

With initial conditions

[y(1) = 1]

2.35.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y2

x (x+ y)

The x domain of f(x, y) when y = 1 is

{−∞ ≤ x < −1,−1 < x < 0, 0 < x ≤ ∞}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{y < −1∨−1 < y}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y2

x (x+ y)

)
= 2y

x (x+ y) −
y2

x (x+ y)2

The x domain of ∂f
∂y

when y = 1 is

{−∞ ≤ x < −1,−1 < x < 0, 0 < x ≤ ∞}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{y < −1∨−1 < y}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

2.35.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x2(u′(x)x+ u(x))− u(x)2 x2 + x2u(x) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u

x (u+ 1)

Where f(x) = − 1
x
and g(u) = u

u+1 . Integrating both sides gives

1
u

u+1
du = −1

x
dx

∫ 1
u

u+1
du =

∫
−1
x
dx

u+ ln (u) = − ln (x) + c2
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The solution is
u(x) + ln (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ ln

(y
x

)
+ ln (x)− c2 = 0

y

x
+ ln

(y
x

)
+ ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = 1. Hence the solution be-

comes

Summary
The solution(s) found are the following

(1)y

x
+ ln

(y
x

)
+ ln (x)− 1 = 0

Verification of solutions
y

x
+ ln

(y
x

)
+ ln (x)− 1 = 0

Verified OK.

2.35.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (x+ y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
y2(b3 − a2)
x (x+ y) − y4a3

x2 (x+ y)2
−
(
− y2

x2 (x+ y)−
y2

x (x+ y)2
)
(xa2+ya3+a1)

−
(

2y
x (x+ y) −

y2

x (x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 + x2y2a2 − x2y2b3 + 2x y3a3 − 2x2yb1 + 2x y2a1 − x y2b1 + y3a1

x2 (x+ y)2
= 0

Setting the numerator to zero gives

(6E)x4b2 + x2y2a2 − x2y2b3 + 2x y3a3 − 2x2yb1 + 2x y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1v

2
2 + 2a3v1v32 + b2v

4
1 − b3v

2
1v

2
2 + 2a1v1v22 + a1v

3
2 − 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 + (−b3 + a2) v21v22 − 2b1v21v2 + 2a3v1v32 + (2a1 − b1) v1v22 + a1v

3
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

2a3 = 0
−2b1 = 0

2a1 − b1 = 0
−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (x+ y)

)
(x)

= yx

x+ y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

yx
x+y

dy

Which results in

S = ln (y) + y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (x+ y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
x+ y

xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x ln (y) + y

x
= c1

Which simplifies to
x ln (y) + y

x
= c1

Which gives

y = e−LambertW
(

ec1
x

)
+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(x+y)
dS
dR

= 0

R = x

S = ln (y)x+ y

x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = LambertW (ec1)

417



c1 = 1

Substituting c1 found above in the general solution gives

y = xLambertW
( e
x

)
Summary
The solution(s) found are the following

(1)y = xLambertW
( e
x

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = xLambertW
( e
x

)
Verified OK.

2.35.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)
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We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + xy

)
dy =

(
y2
)
dx(

−y2
)
dx+

(
x2 + xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2

N(x, y) = x2 + xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−y2

)
= −2y

And
∂N

∂x
= ∂

∂x

(
x2 + xy

)
= y + 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = −y2 and N = xy+ x2 by this integrating factor the ode
becomes exact. The new M,N are

M = − y

x2

N = xy + x2

x2y

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x
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If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 + xy

x2y

)
dy =

( y

x2

)
dx(

− y

x2

)
dx+

(
x2 + xy

x2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − y

x2

N(x, y) = x2 + xy

x2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− y

x2

)
= − 1

x2

And
∂N

∂x
= ∂

∂x

(
x2 + xy

x2y

)
= − 1

x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− y

x2 dx

(3)φ = y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2+xy
x2y

. Therefore equation (4) becomes

(5)x2 + xy

x2y
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (y) + y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (y) + y

x
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The solution becomes

y = e−LambertW
(

ec1
x

)
+c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = LambertW (ec1)

c1 = 1

Substituting c1 found above in the general solution gives

y = xLambertW
( e
x

)
Summary
The solution(s) found are the following

(1)y = xLambertW
( e
x

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = xLambertW
( e
x

)
Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.375 (sec). Leaf size: 13� �
dsolve([x^2*diff(y(x),x)=y(x)^2-x*y(x)*diff(y(x),x),y(1) = 1],y(x), singsol=all)� �

y(x) = LambertW
( e
x

)
x

3 Solution by Mathematica
Time used: 2.335 (sec). Leaf size: 13� �
DSolve[{x^2*y'[x]==y[x]^2-x*y[x]*y'[x],{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xW
( e
x

)
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2.36 problem 36
2.36.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 425
2.36.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 426
2.36.3 Solving as first order special form ID 1 ode . . . . . . . . . . . . 428
2.36.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 430
2.36.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 434
2.36.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 438

Internal problem ID [5122]
Internal file name [OUTPUT/4615_Sunday_June_05_2022_03_02_02_PM_20895447/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − e3x−2y = 0

With initial conditions

[y(0) = 0]

2.36.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= e3x−2y

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
e3x−2y)

= −2 e3x−2y

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

2.36.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= e3xe−2y

Where f(x) = e3x and g(y) = e−2y. Integrating both sides gives

1
e−2y dy = e3x dx∫ 1
e−2y dy =

∫
e3x dx

e2y
2 = e3x

3 + c1

Which results in

y =
ln
(

2 e3x
3 + 2c1

)
2
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 − ln (3)

2 + ln (1 + 3c1)
2

c1 =
1
6

Substituting c1 found above in the general solution gives

y = − ln (3)
2 + ln (2 e3x + 1)

2

Summary
The solution(s) found are the following

(1)y = − ln (3)
2 + ln (2 e3x + 1)

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (3)
2 + ln (2 e3x + 1)

2

Verified OK.
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2.36.3 Solving as first order special form ID 1 ode

Writing the ode as

y′ = e3x−2y (1)

And using the substitution u = e2y then

u′ = 2y′e2y

The above shows that

y′ = u′(x) e−2y

2

= u′(x)
2u

Substituting this in (1) gives

u′(x)
2u = e3x

u

The above simplifies to

u′(x) = 2 e3x (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

2 e3x dx

= 2 e3x
3 + c1

Substituting the solution found for u(x) in u = e2y gives

y = ln (u(x))
2

=
ln
(

2 e3x
3 + c1

)
2

= − ln (3)
2 + ln (2 e3x + 3c1)

2
Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − ln (3)
2 + ln (2 + 3c1)

2
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c1 =
1
3

Substituting c1 found above in the general solution gives

y = − ln (3)
2 + ln (2 e3x + 1)

2

Summary
The solution(s) found are the following

(1)y = − ln (3)
2 + ln (2 e3x + 1)

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (3)
2 + ln (2 e3x + 1)

2

Verified OK.

429



2.36.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = e3x−2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = e−3x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

e−3xdx

Which results in

S = e3x
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = e3x−2y

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = e3x

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e2y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = e2R
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e3x
3 = e2y

2 + c1

Which simplifies to

e3x
3 = e2y

2 + c1

Which gives

y =
ln
(

2 e3x
3 − 2c1

)
2

432



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= e3x−2y dS
dR

= e2R

R = y

S = e3x
3

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 − ln (3)

2 + ln (1− 3c1)
2

c1 = −1
6

Substituting c1 found above in the general solution gives

y = − ln (3)
2 + ln (2 e3x + 1)

2

Summary
The solution(s) found are the following

(1)y = − ln (3)
2 + ln (2 e3x + 1)

2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (3)
2 + ln (2 e3x + 1)

2

Verified OK.

2.36.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

434



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

e2y
)
dy =

(
e3x
)
dx(

−e3x
)
dx+

(
e2y
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −e3x

N(x, y) = e2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−e3x

)
= 0

And
∂N

∂x
= ∂

∂x

(
e2y
)

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e3x dx

(3)φ = −e3x
3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= e2y. Therefore equation (4) becomes

(5)e2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = e2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
e2y
)
dy

f(y) = e2y
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −e3x
3 + e2y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −e3x
3 + e2y

2
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The solution becomes

y =
ln
(

2 e3x
3 + 2c1

)
2

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = ln (2)
2 − ln (3)

2 + ln (1 + 3c1)
2

c1 =
1
6

Substituting c1 found above in the general solution gives

y = − ln (3)
2 + ln (2 e3x + 1)

2
Summary
The solution(s) found are the following

(1)y = − ln (3)
2 + ln (2 e3x + 1)

2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − ln (3)
2 + ln (2 e3x + 1)

2

Verified OK.
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2.36.6 Maple step by step solution

Let’s solve
[y′ − e3x−2y = 0, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(ey)2 = (ex)3

• Integrate both sides with respect to x∫
y′(ey)2 dx =

∫
(ex)3 dx+ c1

• Evaluate integral
(ey)2
2 = (ex)3

3 + c1

• Solve for y

y =
ln
(

2
(
ex

)3
3 +2c1

)
2

• Use initial condition y(0) = 0

0 = ln
( 2
3+2c1

)
2

• Solve for c1
c1 = 1

6

• Substitute c1 = 1
6 into general solution and simplify

y = − ln(3)
2 + ln

(
2 e3x+1

)
2

• Solution to the IVP

y = − ln(3)
2 + ln

(
2 e3x+1

)
2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 15� �
dsolve([diff(y(x),x)=exp(3*x-2*y(x)),y(0) = 0],y(x), singsol=all)� �

y(x) = − ln (3)
2 + ln (1 + 2 e3x)

2

3 Solution by Mathematica
Time used: 0.881 (sec). Leaf size: 23� �
DSolve[{y'[x]==Exp[3*x-2*y[x]],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2 log

(
1
3
(
2e3x + 1

))
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2.37 problem 37
2.37.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 440
2.37.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 441
2.37.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 443
2.37.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 447
2.37.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 451

Internal problem ID [5123]
Internal file name [OUTPUT/4616_Sunday_June_05_2022_03_02_03_PM_46396852/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 37.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

x
= sin (2x)

With initial conditions [
y
(π
4

)
= 2
]

2.37.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = sin (2x)
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Hence the ode is

y′ + y

x
= sin (2x)

The domain of p(x) = 1
x
is

{x < 0∨ 0 < x}

And the point x0 = π
4 is inside this domain. The domain of q(x) = sin (2x) is

{−∞ < x < ∞}

And the point x0 = π
4 is also inside this domain. Hence solution exists and is unique.

2.37.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µy) = (µ) (sin (2x))
d
dx(xy) = (x) (sin (2x))

d(xy) = (x sin (2x)) dx

Integrating gives

xy =
∫

x sin (2x) dx

xy = sin (2x)
4 − x cos (2x)

2 + c1

Dividing both sides by the integrating factor µ = x results in

y =
sin(2x)

4 − x cos(2x)
2

x
+ c1

x

which simplifies to

y = −2x cos (2x) + sin (2x) + 4c1
4x
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Initial conditions are used to solve for c1. Substituting x = π
4 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 1 + 4c1
π

c1 =
π

2 − 1
4

Substituting c1 found above in the general solution gives

y = −2x cos (2x) + sin (2x) + 2π − 1
4x

Summary
The solution(s) found are the following

(1)y = −2x cos (2x) + sin (2x) + 2π − 1
4x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x cos (2x) + sin (2x) + 2π − 1
4x

Verified OK.
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2.37.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + x sin (2x)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + x sin (2x)
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x sin (2x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R sin (2R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (2R)
4 − R cos (2R)

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy = sin (2x)
4 − x cos (2x)

2 + c1

Which simplifies to

xy = sin (2x)
4 − x cos (2x)

2 + c1

Which gives

y = −2x cos (2x) + sin (2x) + 4c1
4x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+x sin(2x)
x

dS
dR

= R sin (2R)

R = x

S = xy

Initial conditions are used to solve for c1. Substituting x = π
4 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 1 + 4c1
π

c1 =
π

2 − 1
4

Substituting c1 found above in the general solution gives

y = −2x cos (2x) + sin (2x) + 2π − 1
4x

Summary
The solution(s) found are the following

(1)y = −2x cos (2x) + sin (2x) + 2π − 1
4x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x cos (2x) + sin (2x) + 2π − 1
4x

Verified OK.

2.37.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy = (−y + x sin (2x)) dx
(y − x sin (2x)) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − x sin (2x)
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − x sin (2x))

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − x sin (2x) dx

(3)φ = xy − sin (2x)
4 + x cos (2x)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy − sin (2x)
4 + x cos (2x)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − sin (2x)
4 + x cos (2x)

2

The solution becomes

y = −2x cos (2x) + sin (2x) + 4c1
4x
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Initial conditions are used to solve for c1. Substituting x = π
4 and y = 2 in the above

solution gives an equation to solve for the constant of integration.

2 = 1 + 4c1
π

c1 =
π

2 − 1
4

Substituting c1 found above in the general solution gives

y = −2x cos (2x) + sin (2x) + 2π − 1
4x

Summary
The solution(s) found are the following

(1)y = −2x cos (2x) + sin (2x) + 2π − 1
4x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −2x cos (2x) + sin (2x) + 2π − 1
4x

Verified OK.
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2.37.5 Maple step by step solution

Let’s solve[
y′ + y

x
= sin (2x) , y

(
π
4

)
= 2
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ sin (2x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= sin (2x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x) sin (2x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (2x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(2x)dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
x sin(2x)dx+c1

x

• Evaluate the integrals on the rhs

y =
sin(2x)

4 −x cos(2x)
2 +c1

x

• Simplify
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y = −2x cos(2x)+sin(2x)+4c1
4x

• Use initial condition y
(
π
4

)
= 2

2 = 1+4c1
π

• Solve for c1
c1 = π

2 − 1
4

• Substitute c1 = π
2 − 1

4 into general solution and simplify

y = −2x cos(2x)+sin(2x)+2π−1
4x

• Solution to the IVP
y = −2x cos(2x)+sin(2x)+2π−1

4x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve([diff(y(x),x)+1/x*y(x)=sin(2*x),y(1/4*Pi) = 2],y(x), singsol=all)� �

y(x) = −2x cos (2x) + 2π + sin (2x)− 1
4x

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 28� �
DSolve[{y'[x]+1/x*y[x]==Sin[2*x],{y[Pi/4]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(2x)− 2x cos(2x) + 2π − 1
4x
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2.38 problem 38
2.38.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 453
2.38.2 Solving as first order ode lie symmetry calculated ode . . . . . . 455
2.38.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 460

Internal problem ID [5124]
Internal file name [OUTPUT/4617_Sunday_June_05_2022_03_02_04_PM_19127363/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 + x2y′ − xyy′ = 0

2.38.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)2 x2 + x2(u′(x)x+ u(x))− x2u(x) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x (u− 1)
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Where f(x) = 1
x
and g(u) = u

u−1 . Integrating both sides gives

1
u

u−1
du = 1

x
dx

∫ 1
u

u−1
du =

∫ 1
x
dx

u− ln (u) = ln (x) + c2

The solution is
u(x)− ln (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
− ln

(y
x

)
− ln (x)− c2 = 0

y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Figure 103: Slope field plot
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Verification of solutions
y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Verified OK.

2.38.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (−x+ y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y2(b3 − a2)
x (−x+ y) −

y4a3

x2 (−x+ y)2

−
(
− y2

x2 (−x+ y) +
y2

x (−x+ y)2
)
(xa2 + ya3 + a1)

−
(

2y
x (−x+ y) −

y2

x (−x+ y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1

x2 (x− y)2
= 0
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Setting the numerator to zero gives

(6E)x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 + b2v

4
1 + b3v

2
1v

2
2 − 2a1v1v22 + a1v

3
2 + 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 + (b3 − a2) v21v22 + 2b1v21v2 − 2a3v1v32 + (−2a1 − b1) v1v22 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−2a3 = 0
2b1 = 0

−2a1 − b1 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

456



Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (−x+ y)

)
(x)

= yx

x− y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

yx
x−y

dy

Which results in

S = ln (y)− y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (−x+ y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2

Sy =
x− y

xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x ln (y)− y

x
= c1

Which simplifies to

x ln (y)− y

x
= c1

Which gives

y = e−LambertW
(
− ec1

x

)
+c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(−x+y)
dS
dR

= 0

R = x

S = ln (y)x− y

x

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
− ec1

x

)
+c1
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Figure 104: Slope field plot

Verification of solutions

y = e−LambertW
(
− ec1

x

)
+c1

Verified OK.

2.38.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 − xy

)
dy =

(
−y2

)
dx(

y2
)
dx+

(
x2 − xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = x2 − xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2
)

= 2y

And
∂N

∂x
= ∂

∂x

(
x2 − xy

)
= 2x− y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = y2 and N = x2 − xy by this integrating factor the ode
becomes exact. The new M,N are

M = y

x2

N = x2 − xy

x2y

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x2 − xy

x2y

)
dy =

(
− y

x2

)
dx( y

x2

)
dx+

(
x2 − xy

x2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

x2

N(x, y) = x2 − xy

x2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

( y

x2

)
= 1

x2

And
∂N

∂x
= ∂

∂x

(
x2 − xy

x2y

)
= 1

x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y

x2 dx

(3)φ = −y

x
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2−xy
x2y

. Therefore equation (4) becomes

(5)x2 − xy

x2y
= −1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (y)− y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (y)− y

x

The solution becomes

y = e−LambertW
(
− ec1

x

)
+c1

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
− ec1

x

)
+c1
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Figure 105: Slope field plot

Verification of solutions

y = e−LambertW
(
− ec1

x

)
+c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(y(x)^2+x^2*diff(y(x),x)=x*y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) = −xLambertW
(
−e−c1

x

)
3 Solution by Mathematica
Time used: 2.23 (sec). Leaf size: 25� �
DSolve[y[x]^2+x^2*y'[x]==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW

(
−e−c1

x

)
y(x) → 0
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2.39 problem 39
2.39.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 467
2.39.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 469
2.39.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 473
2.39.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 476
2.39.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 480

Internal problem ID [5125]
Internal file name [OUTPUT/4618_Sunday_June_05_2022_03_02_05_PM_59597733/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _Bernoulli]

2xyy′ + y2 = x2

2.39.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2x2u(x) (u′(x)x+ u(x)) + u(x)2 x2 = x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u2 − 1
2ux
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Where f(x) = − 1
2x and g(u) = 3u2−1

u
. Integrating both sides gives

1
3u2−1

u

du = − 1
2x dx

∫ 1
3u2−1

u

du =
∫

− 1
2x dx

ln (3u2 − 1)
6 = − ln (x)

2 + c2

Raising both side to exponential gives(
3u2 − 1

) 1
6 = e−

ln(x)
2 +c2

Which simplifies to (
3u2 − 1

) 1
6 = c3√

x

Which simplifies to (
3u(x)2 − 1

) 1
6 = c3ec2√

x

The solution is (
3u(x)2 − 1

) 1
6 = c3ec2√

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

3y2
x2 − 1

) 1
6

= c3ec2√
x(

3y2 − x2

x2

) 1
6

= c3ec2√
x

Which simplifies to (
−−3y2 + x2

x2

) 1
6

= c3ec2√
x

Summary
The solution(s) found are the following

(1)
(
−−3y2 + x2

x2

) 1
6

= c3ec2√
x
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Figure 106: Slope field plot

Verification of solutions (
−−3y2 + x2

x2

) 1
6

= c3ec2√
x

Verified OK.

2.39.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x2 + y2

2xy
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
yx

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
yx

dy

Which results in

S = y2x

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x2 + y2

2xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y2

2
Sy = xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy2

2 = x3

6 + c1

Which simplifies to

xy2

2 = x3

6 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x2+y2

2xy
dS
dR

= R2

2

R = x

S = y2x

2

Summary
The solution(s) found are the following

(1)xy2

2 = x3

6 + c1
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Figure 107: Slope field plot

Verification of solutions

xy2

2 = x3

6 + c1

Verified OK.

2.39.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −−x2 + y2

2xy
This is a Bernoulli ODE.

y′ = − 1
2xy +

x

2
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
2x

f1(x) =
x

2
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = − y2

2x + x

2 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2x + x

2
w′ = −w

x
+ x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = x
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Hence the ode is

w′(x) + w(x)
x

= x

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ) (x)
d
dx(xw) = (x) (x)

d(xw) = x2 dx

Integrating gives

xw =
∫

x2 dx

xw = x3

3 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) = x2

3 + c1
x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x2

3 + c1
x

Solving for y gives

y(x) =
√
3
√
x (x3 + 3c1)
3x

y(x) = −
√
3
√
x (x3 + 3c1)
3x

Summary
The solution(s) found are the following

(1)y =
√
3
√
x (x3 + 3c1)
3x

(2)y = −
√
3
√

x (x3 + 3c1)
3x
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Figure 108: Slope field plot

Verification of solutions

y =
√
3
√

x (x3 + 3c1)
3x

Verified OK.

y = −
√
3
√

x (x3 + 3c1)
3x

Verified OK.

2.39.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2xy) dy =
(
x2 − y2

)
dx(

−x2 + y2
)
dx+(2xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2 + y2

N(x, y) = 2xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2 + y2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(2xy)

= 2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 + y2 dx

(3)φ = −1
3x

3 + y2x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2xy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2xy. Therefore equation (4) becomes

(5)2xy = 2xy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −1
3x

3 + y2x+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
3x

3 + y2x

Summary
The solution(s) found are the following

(1)−x3

3 + xy2 = c1

Figure 109: Slope field plot

Verification of solutions

−x3

3 + xy2 = c1

Verified OK.
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2.39.5 Maple step by step solution

Let’s solve
2xyy′ + y2 = x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y = 2y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x2 + y2) dx+ f1(y)

• Evaluate integral
F (x, y) = −x3

3 + y2x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
2xy = 2xy + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −1
3x

3 + y2x

• Substitute F (x, y) into the solution of the ODE
−1

3x
3 + y2x = c1

• Solve for y{
y = −

√
3
√

x(x3+3c1)
3x , y =

√
3
√

x(x3+3c1)
3x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
dsolve(2*x*y(x)*diff(y(x),x)=x^2-y(x)^2,y(x), singsol=all)� �

y(x) = −
√
3
√
x (x3 + 3c1)
3x

y(x) =
√
3
√

x (x3 + 3c1)
3x

3 Solution by Mathematica
Time used: 0.2 (sec). Leaf size: 56� �
DSolve[2*x*y[x]*y'[x]==x^2-y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x3 + 3c1√
3
√
x

y(x) →
√
x3 + 3c1√
3
√
x
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2.40 problem 40
2.40.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 482
2.40.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 483
2.40.3 Solving as first order ode lie symmetry calculated ode . . . . . . 485
2.40.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 490

Internal problem ID [5126]
Internal file name [OUTPUT/4619_Sunday_June_05_2022_03_02_07_PM_33169822/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 40.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − −2y + x+ 1
2x− 4y = 0

With initial conditions

[y(1) = 1]

2.40.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 2y − x− 1
−2x+ 4y

The x domain of f(x, y) when y = 1 is

{x < 2∨ 2 < x}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is{
y <

1
2 ∨ 1

2 < y

}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
2y − x− 1
−2x+ 4y

)
= 1

−x+ 2y − 2y − x− 1
(−x+ 2y)2

The x domain of ∂f
∂y

when y = 1 is

{x < 2∨ 2 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{
y <

1
2 ∨ 1

2 < y

}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

2.40.2 Solving as differentialType ode

Writing the ode as

y′ = −2y + x+ 1
2x− 4y (1)

Which becomes

(−4y) dy = (−2x) dy + (−2y + x+ 1) dx (2)

But the RHS is complete differential because

(−2x) dy + (−2y + x+ 1) dx = d

(
1
2x

2 − 2xy + x

)
Hence (2) becomes

(−4y) dy = d

(
1
2x

2 − 2xy + x

)
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Integrating both sides gives gives these solutions

y = x

2 +
√
−2c1 − 2x

2 + c1

y = x

2 −
√
−2c1 − 2x

2 + c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

1 = 1
2 −

√
−2c1 − 2

2 + c1

Warning: Unable to solve for constant of integration. Initial conditions are used to solve
for c1. Substituting x = 1 and y = 1 in the above solution gives an equation to solve
for the constant of integration.

1 = 1
2 +

√
−2c1 − 2

2 + c1

c1 =
1
4 − i

√
11
4

Substituting c1 found above in the general solution gives

y = x

2 +
√

−2 + 2i
√
11− 8x

4 + 1
4 − i

√
11
4

Summary
The solution(s) found are the following

(1)y = x

2 +
√

−2 + 2i
√
11− 8x

4 + 1
4 − i

√
11
4

Verification of solutions

y = x

2 +
√

−2 + 2i
√
11− 8x

4 + 1
4 − i

√
11
4

Verified OK.
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2.40.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 2y − x− 1
−2x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(2y − x− 1) (b3 − a2)

−2x+ 4y − (2y − x− 1)2 a3
4 (−x+ 2y)2

−
(
− 1
2 (−x+ 2y) +

2y − x− 1
2 (−x+ 2y)2

)
(xa2 + ya3 + a1)

−
(

1
−x+ 2y − 2y − x− 1

(−x+ 2y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + x2a3 − 4x2b2 − 2x2b3 − 8xya2 − 4xya3 + 16xyb2 + 8xyb3 + 8y2a2 + 4y2a3 − 16y2b2 − 8y2b3 + 2xa3 + 4xb2 − 2xb3 − 4ya2 − 6ya3 + 8yb3 − 2a1 + a3 + 4b1
4 (x− 2y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − x2a3 + 4x2b2 + 2x2b3 + 8xya2 + 4xya3 − 16xyb2 − 8xyb3 − 8y2a2
−4y2a3+16y2b2+8y2b3−2xa3−4xb2+2xb3+4ya2+6ya3−8yb3+2a1−a3
− 4b1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 + 8a2v1v2 − 8a2v22 − a3v
2
1 + 4a3v1v2 − 4a3v22 + 4b2v21

− 16b2v1v2 + 16b2v22 + 2b3v21 − 8b3v1v2 + 8b3v22 + 4a2v2
− 2a3v1 + 6a3v2 − 4b2v1 + 2b3v1 − 8b3v2 + 2a1 − a3 − 4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2−a3+4b2+2b3) v21+(8a2+4a3−16b2−8b3) v1v2+(−2a3−4b2+2b3) v1
+ (−8a2 − 4a3 + 16b2 + 8b3) v22 + (4a2 + 6a3 − 8b3) v2 + 2a1 − a3 − 4b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 − a3 − 4b1 = 0
4a2 + 6a3 − 8b3 = 0

−2a3 − 4b2 + 2b3 = 0
−8a2 − 4a3 + 16b2 + 8b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0
8a2 + 4a3 − 16b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = a2 + 2b1 − 4b2
a2 = a2

a3 = 2a2 − 8b2
b1 = b1

b2 = b2

b3 = 2a2 − 6b2
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
2y − x− 1
−2x+ 4y

)
(2)

= − 1
x− 2y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 1
x−2y

dy

Which results in

S = −xy + y2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y − x− 1
−2x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y

Sy = −x+ 2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x

2 − 1
2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

2 − 1
2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −1
4R

2 − 1
2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y(x− y) = −1
4x

2 − 1
2x+ c1

Which simplifies to

−y(x− y) = −1
4x

2 − 1
2x+ c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y−x−1
−2x+4y

dS
dR

= −R
2 − 1

2

R = x

S = −y(x− y)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

0 = −3
4 + c1

c1 =
3
4

Substituting c1 found above in the general solution gives

−y(x− y) = −1
4x

2 − 1
2x+ 3

4
Summary
The solution(s) found are the following

(1)−y(x− y) = −1
4x

2 − 1
2x+ 3

4
Verification of solutions

−y(x− y) = −1
4x

2 − 1
2x+ 3

4

Verified OK.
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2.40.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2x+ 4y) dy = (2y − x− 1) dx
(−2y + x+ 1) dx+(−2x+ 4y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y + x+ 1
N(x, y) = −2x+ 4y
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−2y + x+ 1)

= −2

And
∂N

∂x
= ∂

∂x
(−2x+ 4y)

= −2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y + x+ 1dx

(3)φ = x(x− 4y + 2)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2x+ 4y. Therefore equation (4) becomes

(5)−2x+ 4y = −2x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 4y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(4y) dy

f(y) = 2y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(x− 4y + 2)
2 + 2y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(x− 4y + 2)

2 + 2y2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

3
2 = c1

c1 =
3
2

Substituting c1 found above in the general solution gives

x(x− 4y + 2)
2 + 2y2 = 3

2

Summary
The solution(s) found are the following

(1)x2

2 − 2xy + 2y2 + x = 3
2
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Verification of solutions

x2

2 − 2xy + 2y2 + x = 3
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = 1/2, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.234 (sec). Leaf size: 17� �
dsolve([diff(y(x),x)=(x-2*y(x)+1)/(2*x-4*y(x)),y(1) = 1],y(x), singsol=all)� �

y(x) = x

2 +
√
−2x+ 3

2
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3 Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 24� �
DSolve[{y'[x]==(x-2*y[x]+1)/(2*x-4*y[x]),{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
(
x− i

√
2x− 3

)
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2.41 problem 41
2.41.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 495
2.41.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 497
2.41.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 501
2.41.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 506

Internal problem ID [5127]
Internal file name [OUTPUT/4620_Sunday_June_05_2022_03_02_08_PM_70738348/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
−x3 + 1

)
y′ + yx2 = x2(−x3 + 1

)
2.41.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x2

x3 − 1
q(x) = x2

Hence the ode is

y′ − x2y

x3 − 1 = x2
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The integrating factor µ is

µ = e
∫
− x2

x3−1dx

= 1
(x3 − 1)

1
3

The ode becomes

d
dx(µy) = (µ)

(
x2)

d
dx

(
y

(x3 − 1)
1
3

)
=
(

1
(x3 − 1)

1
3

)(
x2)

d
(

y

(x3 − 1)
1
3

)
=
(

x2

(x3 − 1)
1
3

)
dx

Integrating gives

y

(x3 − 1)
1
3
=
∫

x2

(x3 − 1)
1
3
dx

y

(x3 − 1)
1
3
= (x− 1) (x2 + x+ 1)

2 (x3 − 1)
1
3

+ c1

Dividing both sides by the integrating factor µ = 1
(x3−1)

1
3
results in

y = (x− 1) (x2 + x+ 1)
2 + c1

(
x3 − 1

) 1
3

which simplifies to

y = x3

2 − 1
2 + c1

(
x3 − 1

) 1
3

Summary
The solution(s) found are the following

(1)y = x3

2 − 1
2 + c1

(
x3 − 1

) 1
3
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Figure 110: Slope field plot

Verification of solutions

y = x3

2 − 1
2 + c1

(
x3 − 1

) 1
3

Verified OK.

2.41.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2(x3 + y − 1)
x3 − 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 68: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) =
(
x3 − 1

) 1
3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

(x3 − 1)
1
3
dy

Which results in

S = y

(x3 − 1)
1
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2(x3 + y − 1)
x3 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y x2

(x3 − 1)
4
3

Sy =
1

(x3 − 1)
1
3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2

(x3 − 1)
1
3

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2

(R3 − 1)
1
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = (R− 1) (R2 +R + 1)
2 (R3 − 1)

1
3

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

(x3 − 1)
1
3
= (x− 1) (x2 + x+ 1)

2 (x3 − 1)
1
3

+ c1

Which simplifies to

−x3 + 2c1(x3 − 1)
1
3 − 2y − 1

2 (x3 − 1)
1
3

= 0

Which gives

y = x3

2 − 1
2 + c1

(
x3 − 1

) 1
3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2(x3+y−1
)

x3−1
dS
dR

= R2

(R3−1)
1
3

R = x

S = y

(x3 − 1)
1
3
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Summary
The solution(s) found are the following

(1)y = x3

2 − 1
2 + c1

(
x3 − 1

) 1
3

Figure 111: Slope field plot

Verification of solutions

y = x3

2 − 1
2 + c1

(
x3 − 1

) 1
3

Verified OK.

2.41.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x3 + 1

)
dy =

(
−y x2 + x2(−x3 + 1

))
dx(

y x2 − x2(−x3 + 1
))

dx+
(
−x3 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y x2 − x2(−x3 + 1
)

N(x, y) = −x3 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y x2 − x2(−x3 + 1

))
= x2
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And
∂N

∂x
= ∂

∂x

(
−x3 + 1

)
= −3x2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x3 − 1
((
x2)− (−3x2))

= − 4x2

x3 − 1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4x2

x3−1 dx

The result of integrating gives

µ = e−
4 ln

(
x3−1

)
3

= 1
(x3 − 1)

4
3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x3 − 1)

4
3

(
y x2 − x2(−x3 + 1

))
= x2(x3 + y − 1)

(x3 − 1)
4
3

And

N = µN

= 1
(x3 − 1)

4
3

(
−x3 + 1

)
= − 1

(x3 − 1)
1
3
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2(x3 + y − 1)
(x3 − 1)

4
3

)
+
(
− 1
(x3 − 1)

1
3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2(x3 + y − 1)

(x3 − 1)
4
3

dx

(3)φ = x3 − 2y − 1
2 (x3 − 1)

1
3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

(x3 − 1)
1
3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
(x3−1)

1
3
. Therefore equation (4) becomes

(5)− 1
(x3 − 1)

1
3
= − 1

(x3 − 1)
1
3
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3 − 2y − 1
2 (x3 − 1)

1
3
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x3 − 2y − 1
2 (x3 − 1)

1
3

The solution becomes

y = x3

2 − c1
(
x3 − 1

) 1
3 − 1

2

Summary
The solution(s) found are the following

(1)y = x3

2 − c1
(
x3 − 1

) 1
3 − 1

2

Figure 112: Slope field plot
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Verification of solutions

y = x3

2 − c1
(
x3 − 1

) 1
3 − 1

2

Verified OK.

2.41.4 Maple step by step solution

Let’s solve
(−x3 + 1) y′ + yx2 = x2(−x3 + 1)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = x2y
x3−1 + x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ − x2y
x3−1 = x2

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ − x2y

x3−1

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − x2y

x3−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = −µ(x)x2

x3−1

• Solve to find the integrating factor
µ(x) = 1

((x−1)(x2+x+1))
1
3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)
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• Substitute µ(x) = 1
((x−1)(x2+x+1))

1
3

y = ((x− 1) (x2 + x+ 1))
1
3

(∫
x2

((x−1)(x2+x+1))
1
3
dx+ c1

)
• Evaluate the integrals on the rhs

y = ((x− 1) (x2 + x+ 1))
1
3

(
(x−1)

(
x2+x+1

)
2((x−1)(x2+x+1))

1
3
+ c1

)
• Simplify

y = x3

2 − 1
2 + c1((x− 1) (x2 + x+ 1))

1
3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((1-x^3)*diff(y(x),x)+x^2*y(x)=x^2*(1-x^3),y(x), singsol=all)� �

y(x) = x3

2 − 1
2 +

(
x3 − 1

) 1
3 c1

3 Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 27� �
DSolve[(1-x^3)*y'[x]+x^2*y[x]==x^2*(1-x^3),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
x3 + 2c1 3

√
x3 − 1− 1

)
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2.42 problem 42
2.42.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 508
2.42.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 509
2.42.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 511
2.42.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 515
2.42.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 519

Internal problem ID [5128]
Internal file name [OUTPUT/4621_Sunday_June_05_2022_03_02_09_PM_95706010/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 42.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

x
= sin (x)

With initial conditions [
y
(π
2

)
= 0
]

2.42.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = sin (x)
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Hence the ode is

y′ + y

x
= sin (x)

The domain of p(x) = 1
x
is

{x < 0∨ 0 < x}

And the point x0 = π
2 is inside this domain. The domain of q(x) = sin (x) is

{−∞ < x < ∞}

And the point x0 = π
2 is also inside this domain. Hence solution exists and is unique.

2.42.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µy) = (µ) (sin (x))
d
dx(xy) = (x) (sin (x))

d(xy) = (sin (x)x) dx

Integrating gives

xy =
∫

sin (x)x dx

xy = − cos (x)x+ sin (x) + c1

Dividing both sides by the integrating factor µ = x results in

y = − cos (x)x+ sin (x)
x

+ c1
x

which simplifies to

y = − cos (x)x+ sin (x) + c1
x
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Initial conditions are used to solve for c1. Substituting x = π
2 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0 = 2 + 2c1
π

c1 = −1

Substituting c1 found above in the general solution gives

y = − cos (x)x+ sin (x)− 1
x

Summary
The solution(s) found are the following

(1)y = − cos (x)x+ sin (x)− 1
x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − cos (x)x+ sin (x)− 1
x

Verified OK.
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2.42.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (x)x− y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 71: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x)x− y

x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = sin (R)− cos (R)R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

xy = − cos (x)x+ sin (x) + c1

Which simplifies to

xy = − cos (x)x+ sin (x) + c1

Which gives

y = − cos (x)x+ sin (x) + c1
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(x)x−y
x

dS
dR

= sin (R)R

R = x

S = xy

Initial conditions are used to solve for c1. Substituting x = π
2 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0 = 2 + 2c1
π

c1 = −1

Substituting c1 found above in the general solution gives

y = − cos (x)x+ sin (x)− 1
x

Summary
The solution(s) found are the following

(1)y = − cos (x)x+ sin (x)− 1
x

514



(a) Solution plot (b) Slope field plot

Verification of solutions

y = − cos (x)x+ sin (x)− 1
x

Verified OK.

2.42.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x) dy = (sin (x)x− y) dx
(− sin (x)x+ y) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin (x)x+ y

N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(− sin (x)x+ y)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sin (x)x+ y dx

(3)φ = xy − sin (x) + cos (x)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy − sin (x) + cos (x)x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − sin (x) + cos (x)x

The solution becomes

y = − cos (x)x+ sin (x) + c1
x
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Initial conditions are used to solve for c1. Substituting x = π
2 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0 = 2 + 2c1
π

c1 = −1

Substituting c1 found above in the general solution gives

y = − cos (x)x+ sin (x)− 1
x

Summary
The solution(s) found are the following

(1)y = − cos (x)x+ sin (x)− 1
x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − cos (x)x+ sin (x)− 1
x

Verified OK.
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2.42.5 Maple step by step solution

Let’s solve[
y′ + y

x
= sin (x) , y

(
π
2

)
= 0
]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ sin (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= sin (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x) sin (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
sin(x)xdx+c1

x

• Evaluate the integrals on the rhs
y = − cos(x)x+sin(x)+c1

x

• Use initial condition y
(
π
2

)
= 0

0 = 2(c1+1)
π
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• Solve for c1
c1 = −1

• Substitute c1 = −1 into general solution and simplify
y = − cos(x)x+sin(x)−1

x

• Solution to the IVP
y = − cos(x)x+sin(x)−1

x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve([diff(y(x),x)+y(x)/x=sin(x),y(1/2*Pi) = 0],y(x), singsol=all)� �

y(x) = sin (x)− cos (x)x− 1
x

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 18� �
DSolve[{y'[x]+y[x]/x==Sin[x],{y[Pi/2]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)− x cos(x)− 1
x
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2.43 problem 43
2.43.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 521
2.43.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 522
2.43.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 524
2.43.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 528
2.43.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 532
2.43.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 535

Internal problem ID [5129]
Internal file name [OUTPUT/4622_Sunday_June_05_2022_03_02_11_PM_39630131/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + xy2 = −x

With initial conditions

[y(1) = 0]

2.43.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)
= −y2x− x

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
−y2x− x

)
= −2xy

The x domain of ∂f
∂y

when y = 0 is

{−∞ < x < ∞}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

2.43.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= x

(
−y2 − 1

)
Where f(x) = x and g(y) = −y2 − 1. Integrating both sides gives

1
−y2 − 1 dy = x dx∫ 1
−y2 − 1 dy =

∫
x dx

− arctan (y) = x2

2 + c1

Which results in

y = − tan
(
x2

2 + c1

)
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − tan
(
1
2 + c1

)

c1 = −1
2

Substituting c1 found above in the general solution gives

y = − tan
(
x2

2 − 1
2

)
Summary
The solution(s) found are the following

(1)y = − tan
(
x2

2 − 1
2

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = − tan
(
x2

2 − 1
2

)
Verified OK.
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2.43.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2x− x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 74: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2x− x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = − arctan (y) + c1

Which simplifies to

x2

2 = − arctan (y) + c1

Which gives

y = tan
(
−x2

2 + c1

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2x− x dS
dR

= − 1
R2+1

R = y

S = x2

2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = tan
(
−1
2 + c1

)

c1 =
1
2

Substituting c1 found above in the general solution gives

y = − tan
(
x2

2 − 1
2

)
Summary
The solution(s) found are the following

(1)y = − tan
(
x2

2 − 1
2

)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − tan
(
x2

2 − 1
2

)
Verified OK.

2.43.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

−y2 − 1

)
dy = (x) dx

(−x) dx+
(

1
−y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
−y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0

And

∂N

∂x
= ∂

∂x

(
1

−y2 − 1

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
−y2−1 . Therefore equation (4) becomes

(5)1
−y2 − 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y2 + 1

)
dy

f(y) = − arctan (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 − arctan (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 − arctan (y)

The solution becomes

y = − tan
(
x2

2 + c1

)

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = − tan
(
1
2 + c1

)

c1 = −1
2

Substituting c1 found above in the general solution gives

y = − tan
(
x2

2 − 1
2

)
Summary
The solution(s) found are the following

(1)y = − tan
(
x2

2 − 1
2

)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = − tan
(
x2

2 − 1
2

)
Verified OK.

2.43.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= −y2x− x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y2x− x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = −x, f1(x) = 0 and f2(x) = −x. Let

y = −u′

f2u

= −u′

−xu
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −1

f1f2 = 0
f 2
2 f0 = −x3

Substituting the above terms back in equation (2) gives

−xu′′(x) + u′(x)− x3u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
x2

2

)
+ c2 cos

(
x2

2

)
The above shows that

u′(x) = x

(
c1 cos

(
x2

2

)
− c2 sin

(
x2

2

))
Using the above in (1) gives the solution

y =
c1 cos

(
x2

2

)
− c2 sin

(
x2

2

)
c1 sin

(
x2

2

)
+ c2 cos

(
x2

2

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
− sin

(
x2

2

)
+ c3 cos

(
x2

2

)
c3 sin

(
x2

2

)
+ cos

(
x2

2

)
Initial conditions are used to solve for c3. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 =
c3 cos

(1
2

)
− sin

(1
2

)
c3 sin

(1
2

)
+ cos

(1
2

)

533



c3 =
sin
(1
2

)
cos
(1
2

)
Substituting c3 found above in the general solution gives

y =
cos
(

x2

2

)
tan

(1
2

)
− sin

(
x2

2

)
sin
(
x2

2

)
tan

(1
2

)
+ cos

(
x2

2

)
Summary
The solution(s) found are the following

(1)y =
cos
(

x2

2

)
tan

(1
2

)
− sin

(
x2

2

)
sin
(
x2

2

)
tan

(1
2

)
+ cos

(
x2

2

)

(a) Solution plot (b) Slope field plot

Verification of solutions

y =
cos
(

x2

2

)
tan

(1
2

)
− sin

(
x2

2

)
sin
(
x2

2

)
tan

(1
2

)
+ cos

(
x2

2

)
Verified OK.
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2.43.6 Maple step by step solution

Let’s solve
[y′ + xy2 = −x, y(1) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

1+y2
= −x

• Integrate both sides with respect to x∫
y′

1+y2
dx =

∫
−xdx+ c1

• Evaluate integral
arctan (y) = −x2

2 + c1

• Solve for y

y = tan
(
−x2

2 + c1
)

• Use initial condition y(1) = 0
0 = tan

(
−1

2 + c1
)

• Solve for c1
c1 = 1

2

• Substitute c1 = 1
2 into general solution and simplify

y = − tan
(

x2

2 − 1
2

)
• Solution to the IVP

y = − tan
(

x2

2 − 1
2

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 14� �
dsolve([diff(y(x),x)+x+x*y(x)^2=0,y(1) = 0],y(x), singsol=all)� �

y(x) = − tan
(
x2

2 − 1
2

)
3 Solution by Mathematica
Time used: 0.215 (sec). Leaf size: 17� �
DSolve[{y'[x]+x+x*y[x]^2==0,{y[1]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tan
(
1
2
(
1− x2))
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2.44 problem 44
2.44.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 537
2.44.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 539
2.44.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 541
2.44.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 545
2.44.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 549

Internal problem ID [5130]
Internal file name [OUTPUT/4623_Sunday_June_05_2022_03_02_12_PM_91376671/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ +
(
1
x
− 2x

−x2 + 1

)
y = 1

−x2 + 1

2.44.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −−3x2 + 1
x3 − x

q(x) = − 1
x2 − 1

Hence the ode is

y′ − (−3x2 + 1) y
x3 − x

= − 1
x2 − 1
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The integrating factor µ is

µ = e
∫
−−3x2+1

x3−x
dx

= x
(
x2 − 1

)
Which simplifies to

µ = x3 − x

The ode becomes

d
dx(µy) = (µ)

(
− 1
x2 − 1

)
d
dx
((
x3 − x

)
y
)
=
(
x3 − x

)(
− 1
x2 − 1

)
d
((
x3 − x

)
y
)
= (−x) dx

Integrating gives (
x3 − x

)
y =

∫
−x dx(

x3 − x
)
y = −x2

2 + c1

Dividing both sides by the integrating factor µ = x3 − x results in

y = − x2

2 (x3 − x) +
c1

x3 − x

which simplifies to

y = −x2 + 2c1
2x3 − 2x

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x3 − 2x
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Figure 120: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x3 − 2x

Verified OK.

2.44.2 Solving as differentialType ode

Writing the ode as

y′ = −
(
1
x
− 2x

−x2 + 1

)
y + 1

−x2 + 1 (1)

Which becomes

0 =
(
−x3 + x

)
dy +

(
−3y x2 − x+ y

)
dx (2)

But the RHS is complete differential because

(
−x3 + x

)
dy +

(
−3y x2 − x+ y

)
dx = d

(
−y x3 − 1

2x
2 + xy

)
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Hence (2) becomes

0 = d

(
−y x3 − 1

2x
2 + xy

)
Integrating both sides gives gives these solutions

y = −x2 + 2c1
2x (x2 − 1) + c1

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x (x2 − 1) + c1

Figure 121: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x (x2 − 1) + c1

Verified OK.
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2.44.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −3y x2 + x− y

x (x2 − 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 77: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x (x2 − 1) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x(x2−1)

dy

Which results in

S = x
(
x2 − 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −3y x2 + x− y

x (x2 − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 3y x2 − y

Sy = x3 − x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x3 − x
)
y = −x2

2 + c1

Which simplifies to

(
x3 − x

)
y = −x2

2 + c1

Which gives

y = −x2 + 2c1
2x (x2 − 1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −3y x2+x−y
x(x2−1)

dS
dR

= −R

R = x

S =
(
x3 − x

)
y

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x (x2 − 1)
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Figure 122: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x (x2 − 1)

Verified OK.

2.44.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 − 1

))
dy =

(
−3y x2 − x+ y

)
dx(

3y x2 + x− y
)
dx+

(
x
(
x2 − 1

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y x2 + x− y

N(x, y) = x
(
x2 − 1

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
3y x2 + x− y

)
= 3x2 − 1

And
∂N

∂x
= ∂

∂x

(
x
(
x2 − 1

))
= 3x2 − 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y x2 + x− y dx

(3)φ = x(2y x2 + x− 2y)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x(2x2 − 2)

2 + f ′(y)

= x3 − x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x(x2 − 1). Therefore equation (4) becomes

(5)x
(
x2 − 1

)
= x3 − x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x(2y x2 + x− 2y)
2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(2y x2 + x− 2y)

2

The solution becomes

y = −x2 + 2c1
2x (x2 − 1)

Summary
The solution(s) found are the following

(1)y = −x2 + 2c1
2x (x2 − 1)

Figure 123: Slope field plot

Verification of solutions

y = −x2 + 2c1
2x (x2 − 1)

Verified OK.

548



2.44.5 Maple step by step solution

Let’s solve
y′ +

( 1
x
− 2x

−x2+1

)
y = 1

−x2+1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative

y′ = −
(
3x2−1

)
y

x(x2−1) − 1
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ +
(
3x2−1

)
y

x(x2−1) = − 1
x2−1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ +

(
3x2−1

)
y

x(x2−1)

)
= − µ(x)

x2−1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ +

(
3x2−1

)
y

x(x2−1)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)

µ′(x) = µ(x)
(
3x2−1

)
x(x2−1)

• Solve to find the integrating factor
µ(x) = x(x− 1) (x+ 1)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)

x2−1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)

x2−1dx+ c1

• Solve for y

y =
∫
− µ(x)

x2−1dx+c1

µ(x)

• Substitute µ(x) = x(x− 1) (x+ 1)

y =
∫
−x(x−1)(x+1)

x2−1 dx+c1

x(x−1)(x+1)

• Evaluate the integrals on the rhs
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y = −x2
2 +c1

x(x−1)(x+1)

• Simplify
y = −x2+2c1

2x3−2x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)+(1/x-(2*x)/(1-x^2))*y(x)=1/(1-x^2),y(x), singsol=all)� �

y(x) = −x2 + 2c1
2x3 − 2x

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 25� �
DSolve[y'[x]+(1/x-(2*x)/(1-x^2))*y[x]==1/(1-x^2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 + 2c1
2x− 2x3
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2.45 problem 45
2.45.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 551
2.45.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 553
2.45.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 557
2.45.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 562

Internal problem ID [5131]
Internal file name [OUTPUT/4624_Sunday_June_05_2022_03_02_13_PM_99733561/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 45.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ + xy =

(
x2 + 1

) 3
2

2.45.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

x2 + 1
q(x) =

√
x2 + 1

Hence the ode is

y′ + xy

x2 + 1 =
√
x2 + 1
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The integrating factor µ is

µ = e
∫

x
x2+1dx

=
√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(√
x2 + 1

)
d
dx

(√
x2 + 1 y

)
=
(√

x2 + 1
)(√

x2 + 1
)

d
(√

x2 + 1 y
)
=
(
x2 + 1

)
dx

Integrating gives

√
x2 + 1 y =

∫
x2 + 1dx

√
x2 + 1 y = 1

3x
3 + x+ c1

Dividing both sides by the integrating factor µ =
√
x2 + 1 results in

y =
1
3x

3 + x
√
x2 + 1

+ c1√
x2 + 1

which simplifies to

y = x3 + 3c1 + 3x
3
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = x3 + 3c1 + 3x
3
√
x2 + 1
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Figure 124: Slope field plot

Verification of solutions

y = x3 + 3c1 + 3x
3
√
x2 + 1

Verified OK.

2.45.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −xy + (x2 + 1)
3
2

x2 + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 80: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1√
x2 + 1

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1√
x2+1

dy

Which results in

S =
√
x2 + 1 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xy + (x2 + 1)
3
2

x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = yx√
x2 + 1

Sy =
√
x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
3R

3 +R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

√
x2 + 1 y = 1

3x
3 + x+ c1

Which simplifies to
√
x2 + 1 y = 1

3x
3 + x+ c1

Which gives

y = x3 + 3c1 + 3x
3
√
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −xy+
(
x2+1

) 3
2

x2+1
dS
dR

= R2 + 1

R = x

S =
√
x2 + 1 y
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Summary
The solution(s) found are the following

(1)y = x3 + 3c1 + 3x
3
√
x2 + 1

Figure 125: Slope field plot

Verification of solutions

y = x3 + 3c1 + 3x
3
√
x2 + 1

Verified OK.

2.45.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
−xy +

(
x2 + 1

) 3
2
)
dx(

−
(
x2 + 1

) 3
2 + xy

)
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −
(
x2 + 1

) 3
2 + xy

N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−
(
x2 + 1

) 3
2 + xy

)
= x

And

∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((x)− (2x))

= − x

x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− x

x2+1 dx

The result of integrating gives

µ = e−
ln

(
x2+1

)
2

= 1√
x2 + 1

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1√
x2 + 1

(
−
(
x2 + 1

) 3
2 + xy

)
= −

√
x2 + 1x2 − xy +

√
x2 + 1√

x2 + 1
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And

N = µN

= 1√
x2 + 1

(
x2 + 1

)
=

√
x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−
√
x2 + 1x2 − xy +

√
x2 + 1√

x2 + 1

)
+
(√

x2 + 1
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
−
√
x2 + 1x2 − xy +

√
x2 + 1√

x2 + 1
dx

(3)φ = −x3

3 − x+
√
x2 + 1 y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

√
x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

=
√
x2 + 1. Therefore equation (4) becomes

(5)
√
x2 + 1 =

√
x2 + 1 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x3

3 − x+
√
x2 + 1 y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 − x+
√
x2 + 1 y

The solution becomes

y = x3 + 3c1 + 3x
3
√
x2 + 1

Summary
The solution(s) found are the following

(1)y = x3 + 3c1 + 3x
3
√
x2 + 1
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Figure 126: Slope field plot

Verification of solutions

y = x3 + 3c1 + 3x
3
√
x2 + 1

Verified OK.

2.45.4 Maple step by step solution

Let’s solve

(x2 + 1) y′ + xy = (x2 + 1)
3
2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − xy

x2+1 +
√
x2 + 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy

x2+1 =
√
x2 + 1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + xy

x2+1

)
= µ(x)

√
x2 + 1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) =

√
x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)

√
x2 + 1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)

√
x2 + 1dx+ c1

• Solve for y

y =
∫
µ(x)

√
x2+1dx+c1
µ(x)

• Substitute µ(x) =
√
x2 + 1

y =
∫ (

x2+1
)
dx+c1√

x2+1

• Evaluate the integrals on the rhs

y =
1
3x

3+x+c1√
x2+1

• Simplify
y = x3+3c1+3x

3
√
x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((1+x^2)*diff(y(x),x)+x*y(x)=(1+x^2)^(3/2),y(x), singsol=all)� �

y(x) = x3 + 3c1 + 3x
3
√
x2 + 1

3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 29� �
DSolve[(1+x^2)*y'[x]+x*y[x]==(1+x^2)^(3/2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3 + 3x+ 3c1
3
√
x2 + 1

564



2.46 problem 46
2.46.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 565
2.46.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 567
2.46.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 569
2.46.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 573
2.46.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 577
2.46.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 580

Internal problem ID [5132]
Internal file name [OUTPUT/4625_Sunday_June_05_2022_03_02_14_PM_59311949/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

x
(
1 + y2

)
− y
(
x2 + 1

)
y′ = 0

2.46.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(y2 + 1)
y (x2 + 1)

Where f(x) = x
x2+1 and g(y) = y2+1

y
. Integrating both sides gives

1
y2+1
y

dy = x

x2 + 1 dx
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∫ 1
y2+1
y

dy =
∫

x

x2 + 1 dx

ln (y2 + 1)
2 = ln (x2 + 1)

2 + c1

Raising both side to exponential gives√
y2 + 1 = e

ln
(
x2+1

)
2 +c1

Which simplifies to √
y2 + 1 = c2

√
x2 + 1

Which simplifies to √
1 + y2 = c2

√
x2 + 1 ec1

The solution is √
1 + y2 = c2

√
x2 + 1 ec1

Summary
The solution(s) found are the following

(1)
√

1 + y2 = c2
√
x2 + 1 ec1

Figure 127: Slope field plot
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Verification of solutions √
1 + y2 = c2

√
x2 + 1 ec1

Verified OK.

2.46.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x
(
1 + u(x)2 x2)− u(x)x

(
x2 + 1

)
(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 − 1
ux (x2 + 1)

Where f(x) = − 1
x(x2+1) and g(u) = u2−1

u
. Integrating both sides gives

1
u2−1
u

du = − 1
x (x2 + 1) dx∫ 1

u2−1
u

du =
∫

− 1
x (x2 + 1) dx

ln (u− 1)
2 + ln (u+ 1)

2 = ln (x2 + 1)
2 − ln (x) + c2

The above can be written as(
1
2

)
(ln (u− 1) + ln (u+ 1)) = ln (x2 + 1)

2 − ln (x) + 2c2

ln (u− 1) + ln (u+ 1) = (2)
(
ln (x2 + 1)

2 − ln (x) + 2c2
)

= ln
(
x2 + 1

)
− 2 ln (x) + 4c2

Raising both side to exponential gives

eln(u−1)+ln(u+1) = eln
(
x2+1

)
−2 ln(x)+2c2

Which simplifies to

u2 − 1 = 2c2eln
(
x2+1

)
−2 ln(x)

= c3eln
(
x2+1

)
−2 ln(x)
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Which simplifies to

u(x)2 − 1 = c3

(
1 + 1

x2

)

The solution is

u(x)2 − 1 = c3

(
1 + 1

x2

)

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

x2 − 1 = c3

(
1 + 1

x2

)
y2

x2 − 1 = c3

(
1 + 1

x2

)
Summary
The solution(s) found are the following

(1)y2

x2 − 1 = c3

(
1 + 1

x2

)

Figure 128: Slope field plot
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Verification of solutions

y2

x2 − 1 = c3

(
1 + 1

x2

)
Verified OK.

2.46.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x(y2 + 1)
y (x2 + 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 83: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2 + 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x2+1
x

dx

Which results in

S = ln (x2 + 1)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x(y2 + 1)
y (x2 + 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = x

x2 + 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y

y2 + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

R2 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 + 1)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x2 + 1)
2 = ln (1 + y2)

2 + c1

Which simplifies to

ln (x2 + 1)
2 = ln (1 + y2)

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x
(
y2+1

)
y(x2+1)

dS
dR

= R
R2+1

R = y

S = ln (x2 + 1)
2

Summary
The solution(s) found are the following

(1)ln (x2 + 1)
2 = ln (1 + y2)

2 + c1
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Figure 129: Slope field plot

Verification of solutions

ln (x2 + 1)
2 = ln (1 + y2)

2 + c1

Verified OK.

2.46.4 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= x(y2 + 1)
y (x2 + 1)

This is a Bernoulli ODE.
y′ = x

x2 + 1y +
x

x2 + 1
1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
x

x2 + 1
f1(x) =

x

x2 + 1
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = x y2

x2 + 1 + x

x2 + 1 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = xw(x)

x2 + 1 + x

x2 + 1
w′ = 2xw

x2 + 1 + 2x
x2 + 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = − 2x
x2 + 1

q(x) = 2x
x2 + 1
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Hence the ode is

w′(x)− 2xw(x)
x2 + 1 = 2x

x2 + 1

The integrating factor µ is

µ = e
∫
− 2x

x2+1dx

= 1
x2 + 1

The ode becomes

d
dx(µw) = (µ)

(
2x

x2 + 1

)
d
dx

(
w

x2 + 1

)
=
(

1
x2 + 1

)(
2x

x2 + 1

)
d
(

w

x2 + 1

)
=
(

2x
(x2 + 1)2

)
dx

Integrating gives

w

x2 + 1 =
∫ 2x

(x2 + 1)2
dx

w

x2 + 1 = − 1
x2 + 1 + c1

Dividing both sides by the integrating factor µ = 1
x2+1 results in

w(x) = −1 + c1
(
x2 + 1

)
which simplifies to

w(x) = c1x
2 + c1 − 1

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = c1x
2 + c1 − 1

Solving for y gives

y(x) =
√
c1x2 + c1 − 1

y(x) = −
√
c1x2 + c1 − 1

575



Summary
The solution(s) found are the following

(1)y =
√

c1x2 + c1 − 1
(2)y = −

√
c1x2 + c1 − 1

Figure 130: Slope field plot

Verification of solutions

y =
√

c1x2 + c1 − 1

Verified OK.

y = −
√
c1x2 + c1 − 1

Verified OK.
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2.46.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

y2 + 1

)
dy =

(
x

x2 + 1

)
dx(

− x

x2 + 1

)
dx+

(
y

y2 + 1

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = − x

x2 + 1
N(x, y) = y

y2 + 1
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− x

x2 + 1

)
= 0

And
∂N

∂x
= ∂

∂x

(
y

y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− x

x2 + 1 dx

(3)φ = − ln (x2 + 1)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= y
y2+1 . Therefore equation (4) becomes

(5)y

y2 + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y

y2 + 1

)
dy

f(y) = ln (y2 + 1)
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x2 + 1)
2 + ln (y2 + 1)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x2 + 1)
2 + ln (y2 + 1)

2

Summary
The solution(s) found are the following

(1)− ln (x2 + 1)
2 + ln (1 + y2)

2 = c1

579



Figure 131: Slope field plot

Verification of solutions

− ln (x2 + 1)
2 + ln (1 + y2)

2 = c1

Verified OK.

2.46.6 Maple step by step solution

Let’s solve
x(1 + y2)− y(x2 + 1) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y
1+y2

= x
x2+1

• Integrate both sides with respect to x∫
y′y
1+y2

dx =
∫

x
x2+1dx+ c1

• Evaluate integral
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ln
(
1+y2

)
2 = ln

(
x2+1

)
2 + c1

• Solve for y{
y =

√
−e−2c1

(
−x2+e−2c1−1

)
e−2c1 , y = −

√
−e−2c1

(
−x2+e−2c1−1

)
e−2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(x*(1+y(x)^2)-y(x)*(1+x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

c1x2 + c1 − 1
y(x) = −

√
c1x2 + c1 − 1

3 Solution by Mathematica
Time used: 0.499 (sec). Leaf size: 61� �
DSolve[x*(1+y[x]^2)-y[x]*(1+x^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−1 + e2c1 (x2 + 1)
y(x) →

√
−1 + e2c1 (x2 + 1)

y(x) → −i
y(x) → i
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2.47 problem 47
2.47.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 583
2.47.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 583
2.47.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 585
2.47.4 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 588
2.47.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 591
2.47.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 595

Internal problem ID [5133]
Internal file name [OUTPUT/4626_Sunday_June_05_2022_03_02_15_PM_54703841/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 47.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

r tan (θ) r′
a2 − r2

= 1

With initial conditions [
r
(π
4

)
= 0
]
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2.47.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

r′ = f(θ, r)

= −−a2 + r2

tan (θ) r

f(θ, r) is not defined at r = 0 therefore existence and uniqueness theorem do not apply.

2.47.2 Solving as separable ode

In canonical form the ODE is

r′ = F (θ, r)
= f(θ)g(r)

= −−a2 + r2

tan (θ) r

Where f(θ) = − 1
tan(θ) and g(r) = −a2+r2

r
. Integrating both sides gives

1
−a2+r2

r

dr = − 1
tan (θ) dθ∫ 1

−a2+r2

r

dr =
∫

− 1
tan (θ) dθ

ln (−a2 + r2)
2 = − ln (sin (θ)) + c1

Raising both side to exponential gives
√
−a2 + r2 = e− ln(sin(θ))+c1

Which simplifies to
√
−a2 + r2 = c2

sin (θ)

Which can be simplified to become

√
r2 − a2 = c2ec1

sin (θ)
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The solution is
√
r2 − a2 = c2ec1

sin (θ)

Initial conditions are used to solve for c1. Substituting θ = π
4 and r = 0 in the above

solution gives an equation to solve for the constant of integration.

i csgn (ia) a =
√
2 c2ec1

c1 =
ln
(
− csgn(ia)2a2

2c22

)
2

Substituting c1 found above in the general solution gives

√
−a2 + r2 =

c2
√

−2a2
c22

2 sin (θ)
The above simplifies to

2
√
−a2 + r2 sin (θ)− c2

√
−2a2

c22
= 0

Solving for r from the above gives

r = a
√
2
√
− cos (2θ) csc (θ)

2

r = −
a
√
2
√
− cos (2θ) csc (θ)

2
Summary
The solution(s) found are the following

(1)r = a
√
2
√

− cos (2θ) csc (θ)
2

(2)r = −
a
√
2
√
− cos (2θ) csc (θ)

2
Verification of solutions

r = a
√
2
√

− cos (2θ) csc (θ)
2

Verified OK. {positive}

r = −
a
√
2
√
− cos (2θ) csc (θ)

2

Verified OK. {positive}
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2.47.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

r′ = −−a2 + r2

tan (θ) r
r′ = ω(θ, r)

The condition of Lie symmetry is the linearized PDE given by

ηθ + ω(ηr − ξθ)− ω2ξr − ωθξ − ωrη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 86: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(θ, r) = − tan (θ)
η(θ, r) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (θ, r) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dθ

ξ
= dr

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂θ

+ η ∂
∂r

)
S(θ, r) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = r

S is found from

S =
∫ 1

ξ
dθ

=
∫ 1

− tan (θ)dθ

Which results in

S = − ln (sin (θ))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sθ + ω(θ, r)Sr

Rθ + ω(θ, r)Rr
(2)

Where in the above Rθ, Rr, Sθ, Sr are all partial derivatives and ω(θ, r) is the right hand
side of the original ode given by

ω(θ, r) = −−a2 + r2

tan (θ) r
Evaluating all the partial derivatives gives

Rθ = 0
Rr = 1
Sθ = − cot (θ)
Sr = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − r

a2 − r2
(2A)

We now need to express the RHS as function of R only. This is done by solving for θ, r
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − R

−R2 + a2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R2 − a2)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to θ, r coordinates. This
results in

− ln (sin (θ)) = ln (r2 − a2)
2 + c1

Which simplifies to

− ln (sin (θ)) = ln (r2 − a2)
2 + c1

Initial conditions are used to solve for c1. Substituting θ = π
4 and r = 0 in the above

solution gives an equation to solve for the constant of integration.

ln (2)
2 = ln (−a2)

2 + c1

c1 = − ln (−a2)
2 + ln (2)

2
Substituting c1 found above in the general solution gives

− ln (sin (θ)) = ln (−a2 + r2)
2 − ln (−a2)

2 + ln (2)
2

Solving for r from the above gives

r = a
√
2
√
− cos (2θ) csc (θ)

2

r = −
a
√
2
√
− cos (2θ) csc (θ)

2
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Summary
The solution(s) found are the following

(1)r = a
√
2
√

− cos (2θ) csc (θ)
2

(2)r = −
a
√
2
√
− cos (2θ) csc (θ)

2
Verification of solutions

r = a
√
2
√

− cos (2θ) csc (θ)
2

Verified OK. {positive}

r = −
a
√
2
√
− cos (2θ) csc (θ)

2

Verified OK. {positive}

2.47.4 Solving as bernoulli ode

In canonical form, the ODE is

r′ = F (θ, r)

= −−a2 + r2

tan (θ) r

This is a Bernoulli ODE.
r′ = − 1

tan (θ)r +
a2

tan (θ)
1
r

(1)

The standard Bernoulli ODE has the form

r′ = f0(θ)r + f1(θ)rn (2)

The first step is to divide the above equation by rn which gives

r′

rn
= f0(θ)r1−n + f1(θ) (3)

The next step is use the substitution w = r1−n in equation (3) which generates a new
ODE in w(θ) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution r(θ) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(θ) = − 1
tan (θ)

f1(θ) =
a2

tan (θ)
n = −1

Dividing both sides of ODE (1) by rn = 1
r
gives

r′r = − r2

tan (θ) +
a2

tan (θ) (4)

Let

w = r1−n

= r2 (5)

Taking derivative of equation (5) w.r.t θ gives

w′ = 2rr′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(θ)
2 = − w(θ)

tan (θ) +
a2

tan (θ)

w′ = − 2w
tan (θ) +

2a2
tan (θ) (7)

The above now is a linear ODE in w(θ) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(θ) + p(θ)w(θ) = q(θ)

Where here

p(θ) = 2 cot (θ)
q(θ) = 2a2 cot (θ)

Hence the ode is

w′(θ) + 2 cot (θ)w(θ) = 2a2 cot (θ)
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The integrating factor µ is

µ = e
∫
2 cot(θ)dθ

= sin (θ)2

The ode becomes
d
dθ (µw) = (µ)

(
2a2 cot (θ)

)
d
dθ
(
sin (θ)2w

)
=
(
sin (θ)2

) (
2a2 cot (θ)

)
d
(
sin (θ)2w

)
=
(
a2 sin (2θ)

)
dθ

Integrating gives

sin (θ)2w =
∫

a2 sin (2θ) dθ

sin (θ)2w = −a2 cos (2θ)
2 + c1

Dividing both sides by the integrating factor µ = sin (θ)2 results in

w(θ) = −csc (θ)2 a2 cos (2θ)
2 + c1 csc (θ)2

Replacing w in the above by r2 using equation (5) gives the final solution.

r2 = −csc (θ)2 a2 cos (2θ)
2 + c1 csc (θ)2

Which is simplified to

r2 = −
(
a2 cos (θ)2 − a2

2 − c1

)
csc (θ)2

Initial conditions are used to solve for c1. Substituting θ = π
4 and r = 0 in the above

solution gives an equation to solve for the constant of integration.

0 = 2c1

c1 = 0

Substituting c1 found above in the general solution gives

r2 = − csc (θ)2 a2 cos (θ)2 + a2 csc (θ)2

2
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Solving for r from the above gives

r = a
√
2
√
− cos (2θ) csc (θ)

2

r = −
a
√
2
√
− cos (2θ) csc (θ)

2
Summary
The solution(s) found are the following

(1)r = a
√
2
√

− cos (2θ) csc (θ)
2

(2)r = −
a
√
2
√
− cos (2θ) csc (θ)

2
Verification of solutions

r = a
√
2
√

− cos (2θ) csc (θ)
2

Verified OK. {positive}

r = −
a
√
2
√
− cos (2θ) csc (θ)

2

Verified OK. {positive}

2.47.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(θ, r) dθ+N(θ, r) dr = 0 (1A)

Therefore (
− r

−a2 + r2

)
dr =

(
1

tan (θ)

)
dθ(

− 1
tan (θ)

)
dθ+

(
− r

−a2 + r2

)
dr = 0 (2A)

Comparing (1A) and (2A) shows that

M(θ, r) = − 1
tan (θ)

N(θ, r) = − r

−a2 + r2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂r
= ∂N

∂θ

Using result found above gives

∂M

∂r
= ∂

∂r

(
− 1
tan (θ)

)
= 0

And

∂N

∂θ
= ∂

∂θ

(
− r

−a2 + r2

)
= 0
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Since ∂M
∂r

= ∂N
∂θ

, then the ODE is exact The following equations are now set up to solve
for the function φ(θ, r)

∂φ

∂θ
= M (1)

∂φ

∂r
= N (2)

Integrating (1) w.r.t. θ gives∫
∂φ

∂θ
dθ =

∫
M dθ∫

∂φ

∂θ
dθ =

∫
− 1
tan (θ) dθ

(3)φ = − ln (sin (θ)) + f(r)

Where f(r) is used for the constant of integration since φ is a function of both θ and r.
Taking derivative of equation (3) w.r.t r gives

(4)∂φ

∂r
= 0 + f ′(r)

But equation (2) says that ∂φ
∂r

= − r
−a2+r2

. Therefore equation (4) becomes

(5)− r

−a2 + r2
= 0 + f ′(r)

Solving equation (5) for f ′(r) gives

f ′(r) = r

a2 − r2

Integrating the above w.r.t r gives

∫
f ′(r) dr =

∫ (
r

a2 − r2

)
dr

f(r) = − ln (−a2 + r2)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(r) into
equation (3) gives φ

φ = − ln (sin (θ))− ln (−a2 + r2)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (θ))− ln (−a2 + r2)
2

Initial conditions are used to solve for c1. Substituting θ = π
4 and r = 0 in the above

solution gives an equation to solve for the constant of integration.

− ln (−a2)
2 + ln (2)

2 = c1

c1 = − ln (−a2)
2 + ln (2)

2

Substituting c1 found above in the general solution gives

− ln (sin (θ))− ln (−a2 + r2)
2 = − ln (−a2)

2 + ln (2)
2

Solving for r from the above gives

r = a
√
2
√
− cos (2θ) csc (θ)

2

r = −
a
√
2
√
− cos (2θ) csc (θ)

2

Summary
The solution(s) found are the following

(1)r = a
√
2
√

− cos (2θ) csc (θ)
2

(2)r = −
a
√
2
√
− cos (2θ) csc (θ)

2
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Verification of solutions

r = a
√
2
√

− cos (2θ) csc (θ)
2

Verified OK. {positive}

r = −
a
√
2
√
− cos (2θ) csc (θ)

2

Verified OK. {positive}

2.47.6 Maple step by step solution

Let’s solve[
r tan(θ)r′
a2−r2

= 1, r
(
π
4

)
= 0
]

• Highest derivative means the order of the ODE is 1
r′

• Separate variables
r′r

a2−r2
= 1

tan(θ)

• Integrate both sides with respect to θ∫
r′r

a2−r2
dθ =

∫ 1
tan(θ)dθ + c1

• Evaluate integral

− ln
(
r2−a2

)
2 = ln (sin (θ)) + c1

• Solve for r{
r =

√
a2 sin(θ)2(ec1 )2+1

ec1 sin(θ) , r = −
√

a2 sin(θ)2(ec1 )2+1
ec1 sin(θ)

}
• Use initial condition r

(
π
4

)
= 0

0 =

√
a2

(
ec1

)2
2 +1

√
2

ec1

• Solve for c1

c1 =
ln
(
− 2

a2

)
2

• Substitute c1 =
ln
(
− 2

a2

)
2 into general solution and simplify
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r =
√
2
√

cos(2θ) csc(θ)
2
√

− 1
a2

• Use initial condition r
(
π
4

)
= 0

0 = −

√
a2

(
ec1

)2
2 +1

√
2

ec1

• Solve for c1

c1 =
ln
(
− 2

a2

)
2

• Substitute c1 =
ln
(
− 2

a2

)
2 into general solution and simplify

r = −
√
2
√

cos(2θ) csc(θ)
2
√

− 1
a2

• Solutions to the IVP{
r = −

√
2
√

cos(2θ) csc(θ)
2
√

− 1
a2

, r =
√
2
√

cos(2θ) csc(θ)
2
√

− 1
a2

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.188 (sec). Leaf size: 39� �
dsolve([r(theta)*tan(theta)/(a^2-r(theta)^2)*diff(r(theta),theta)=1,r(1/4*Pi) = 0],r(theta), singsol=all)� �

r(θ) = −
a
√
2
√

− cos (2θ) csc (θ)
2

r(θ) = a
√
2
√

− cos (2θ) csc (θ)
2
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3 Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 51� �
DSolve[{r[\[Theta]]*Tan[\[Theta]]/(a^2-r[\[Theta]]^2)*r'[\[Theta]]==1,{r[Pi/4]==0}},r[\[Theta]],\[Theta],IncludeSingularSolutions -> True]� �

r(θ) → −

√
a2 cos(2θ)
cos(2θ)− 1

r(θ) →

√
a2 cos(2θ)
cos(2θ)− 1

597



2.48 problem 48
2.48.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 598
2.48.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 599
2.48.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 601
2.48.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 605

Internal problem ID [5134]
Internal file name [OUTPUT/4627_Sunday_June_05_2022_03_02_17_PM_78923587/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 48.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = cos (x)

With initial conditions

[y(0) = 0]

2.48.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = cos (x)
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Hence the ode is

y′ + y cot (x) = cos (x)

The domain of p(x) = cot (x) is

{x < π_Z104∨ π_Z104 < x}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no solution
at all.

2.48.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)

The ode becomes
d
dx(µy) = (µ) (cos (x))

d
dx(y sin (x)) = (sin (x)) (cos (x))

d(y sin (x)) =
(
sin (2x)

2

)
dx

Integrating gives

y sin (x) =
∫ sin (2x)

2 dx

y sin (x) = −cos (2x)
4 + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = −csc (x) cos (2x)
4 + c1 csc (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration. Solving for c1 gives

c1 =
2 cos (x) cot (x) + 4y − csc (x)

4 csc (x)
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Using given initial conditions results in c1 = 1
4 Hence the solution is

y = −csc (x) cos (2x)
4 + csc (x)

4

Therefore the solution is

y = −csc (x) cos (2x)
4 + csc (x)

4

Summary
The solution(s) found are the following

(1)y = −csc (x) cos (2x)
4 + csc (x)

4

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −csc (x) cos (2x)
4 + csc (x)

4

Verified OK.
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2.48.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cot (x) + cos (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 89: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = y sin (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cot (x) + cos (x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y cos (x)
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (2x)

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (2R)

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −cos (2R)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

sin (x) y = −cos (2x)
4 + c1

Which simplifies to

sin (x) y = −cos (2x)
4 + c1

Which gives

y = −cos (2x)− 4c1
4 sin (x)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cot (x) + cos (x) dS
dR

= sin(2R)
2

R = x

S = y sin (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration. Solving for c1 gives

c1 =
cos (x)2

2 + y sin (x)− 1
4

Using given initial conditions results in c1 = 1
4 Hence the solution is

y = −−1 + cos (2x)
4 sin (x)

Therefore the solution is

y = −−1 + cos (2x)
4 sin (x)

Summary
The solution(s) found are the following

(1)y = −−1 + cos (2x)
4 sin (x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −−1 + cos (2x)
4 sin (x)

Verified OK.

2.48.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy = (−y cot (x) + cos (x)) dx
(y cot (x)− cos (x)) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− cos (x)
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− cos (x))

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− cos (x))
= cos (x) (− sin (x) + y)

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) (− sin (x) + y)) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) (− sin (x) + y) dx

(3)φ = −sin (x) (sin (x)− 2y)
2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −sin (x) (sin (x)− 2y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −sin (x) (sin (x)− 2y)
2

The solution becomes

y = sin (x)2 + 2c1
2 sin (x)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration. Solving for c1 gives

c1 = −sin (x)2

2 + y sin (x)

Using given initial conditions results in c1 = 0 Hence the solution is

y = sin (x)
2
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Therefore the solution is

y = sin (x)
2

Summary
The solution(s) found are the following

(1)y = sin (x)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = sin (x)
2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.157 (sec). Leaf size: 8� �
dsolve([diff(y(x),x)+y(x)*cot(x)=cos(x),y(0) = 0],y(x), singsol=all)� �

y(x) = sin (x)
2

3 Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 11� �
DSolve[{y'[x]+y[x]*Cot[x]==Cos[x],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sin(x)
2
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2.49 problem 49
2.49.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 611
2.49.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 615
2.49.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 619
2.49.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 624

Internal problem ID [5135]
Internal file name [OUTPUT/4628_Sunday_June_05_2022_03_02_18_PM_63767691/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 24. First order differential equations. Further problems 24. page 1068
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWith-
IntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

y′ + y

x
− xy2 = 0

2.49.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y(y x2 − 1)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

611



Table 91: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y2x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2x
dy

Which results in

S = − 1
yx

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(y x2 − 1)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y x2

Sy =
1
y2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
yx

= x+ c1

Which simplifies to

− 1
yx

= x+ c1

Which gives

y = − 1
x (x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
y x2−1

)
x

dS
dR

= 1

R = x

S = − 1
yx
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Summary
The solution(s) found are the following

(1)y = − 1
x (x+ c1)

Figure 135: Slope field plot

Verification of solutions

y = − 1
x (x+ c1)

Verified OK.

2.49.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(y x2 − 1)
x

This is a Bernoulli ODE.
y′ = −1

x
y + xy2 (1)

615



The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) = x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= − 1
yx

+ x (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)
x

+ x

w′ = w

x
− x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −1
x

q(x) = −x

Hence the ode is

w′(x)− w(x)
x

= −x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µw) = (µ) (−x)

d
dx

(w
x

)
=
(
1
x

)
(−x)

d
(w
x

)
= −1 dx

Integrating gives

w

x
=
∫

−1 dx
w

x
= −x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x− x2

which simplifies to

w(x) = x(−x+ c1)

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= x(−x+ c1)
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Or

y = 1
x (−x+ c1)

Summary
The solution(s) found are the following

(1)y = 1
x (−x+ c1)

Figure 136: Slope field plot

Verification of solutions

y = 1
x (−x+ c1)

Verified OK.
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2.49.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
y
(
y x2 − 1

))
dx(

−y
(
y x2 − 1

))
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y
(
y x2 − 1

)
N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y
(
y x2 − 1

))
= −2y x2 + 1

And

∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x

((
−2y x2 + 1

)
− (1)

)
= −2xy

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y (y x2 − 1)
(
(1)−

(
−2y x2 + 1

))
= − 2x2

y x2 − 1

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN
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R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (1)− (−2y x2 + 1)
x (−y (y x2 − 1))− y (x)

= − 2
yx

Replacing all powers of terms xy by t gives

R = −2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 2
t

)
dt

The result of integrating gives

µ = e−2 ln(t)

= 1
t2

Now t is replaced back with xy giving

µ = 1
y2x2

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
y2x2

(
−y
(
y x2 − 1

))
= −y x2 + 1

y x2

And

N = µN

= 1
y2x2 (x)

= 1
y2x
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A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−y x2 + 1
y x2

)
+
(

1
y2x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y x2 + 1

y x2 dx

(3)φ = −y x2 − 1
xy

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x

y
− −y x2 − 1

x y2
+ f ′(y)

= 1
y2x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2x

. Therefore equation (4) becomes

(5)1
y2x

= 1
y2x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −y x2 − 1
xy

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−y x2 − 1

xy

The solution becomes

y = − 1
x (x+ c1)

Summary
The solution(s) found are the following

(1)y = − 1
x (x+ c1)

Figure 137: Slope field plot
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Verification of solutions

y = − 1
x (x+ c1)

Verified OK.

2.49.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= y(y x2 − 1)
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −y

x
+ y2x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 0, f1(x) = − 1
x
and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = −1
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

xu′′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
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u(x) = c1x+ c2

The above shows that
u′(x) = c1

Using the above in (1) gives the solution

y = − c1
x (c1x+ c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − c3
x (c3x+ 1)

Summary
The solution(s) found are the following

(1)y = − c3
x (c3x+ 1)

Figure 138: Slope field plot
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Verification of solutions

y = − c3
x (c3x+ 1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)+y(x)/x=x*y(x)^2,y(x), singsol=all)� �

y(x) = 1
(−x+ c1)x

3 Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 23� �
DSolve[y'[x]+y[x]/x==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1
x2 − c1x

y(x) → 0
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3.1 problem 1
3.1.1 Solving as second order linear constant coeff ode . . . . . . . . 628
3.1.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 631
3.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 636

Internal problem ID [5136]
Internal file name [OUTPUT/4629_Sunday_June_05_2022_03_02_19_PM_13527249/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

y′′ − y′ − 2y = 8

3.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −1, C = −2, f(x) = 8. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y′ − 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −1, C = −2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − λ eλx − 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − λ− 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −1, C = −2 into the above gives

λ1,2 =
1

(2) (1) ±
1

(2) (1)
√

−12 − (4) (1) (−2)

= 1
2 ± 3

2
Hence

λ1 =
1
2 + 3

2

λ2 =
1
2 − 3

2

Which simplifies to
λ1 = 2
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(2)x + c2e

(−1)x

Or
y = c1e2x + c2e−x

Therefore the homogeneous solution yh is

yh = c1e2x + c2e−x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−2A1 = 8

Solving for the unknowns by comparing coefficients results in

[A1 = −4]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −4

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2e−x

)
+ (−4)

Summary
The solution(s) found are the following

(1)y = c1e2x + c2e−x − 4

630



Figure 139: Slope field plot

Verification of solutions

y = c1e2x + c2e−x − 4

Verified OK.

3.1.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −1 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
4 (6)

Comparing the above to (5) shows that

s = 9
t = 4

Therefore eq. (4) becomes

z′′(x) = 9z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 93: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 9
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 3x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
1 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

1 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
e3x
3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e3x
3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y′ − 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2e2x
3

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}]

While the set of the basis functions for the homogeneous solution found earlier is{
e2x
3 , e−x

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1
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The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−2A1 = 8

Solving for the unknowns by comparing coefficients results in

[A1 = −4]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −4

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e2x

3

)
+ (−4)

Summary
The solution(s) found are the following

(1)y = c1e−x + c2e2x
3 − 4
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Figure 140: Slope field plot

Verification of solutions

y = c1e−x + c2e2x
3 − 4

Verified OK.

3.1.3 Maple step by step solution

Let’s solve
y′′ − y′ − 2y = 8

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − r − 2 = 0

• Factor the characteristic polynomial
(r + 1) (r − 2) = 0

• Roots of the characteristic polynomial
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r = (−1, 2)
• 1st solution of the homogeneous ODE

y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2e2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 8

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x e2x

−e−x 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 3 ex

◦ Substitute functions into equation for yp(x)

yp(x) = −8 e−x
(∫

exdx
)

3 + 8 e2x
(∫

e−2xdx
)

3

◦ Compute integrals
yp(x) = −4

• Substitute particular solution into general solution to ODE
y = c1e−x + c2e2x − 4
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=8,y(x), singsol=all)� �

y(x) = c2e−x + e2xc1 − 4

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 23� �
DSolve[y''[x]-y'[x]-2*y[x]==8,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x + c2e

2x − 4
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3.2 problem 2
3.2.1 Solving as second order linear constant coeff ode . . . . . . . . 639
3.2.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 642
3.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 647

Internal problem ID [5137]
Internal file name [OUTPUT/4630_Sunday_June_05_2022_03_02_20_PM_58316311/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 4y = 10 e3x

3.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = −4, f(x) = 10 e3x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = −4. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−4)

= ±2

Hence
λ1 = +2
λ2 = −2

Which simplifies to
λ1 = 2
λ2 = −2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(2)x + c2e

(−2)x

Or
y = c1e2x + c2e−2x

Therefore the homogeneous solution yh is

yh = c1e2x + c2e−2x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

10 e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e3x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e3x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

5A1e3x = 10 e3x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e3x

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2e−2x)+ (2 e3x)

Summary
The solution(s) found are the following

(1)y = c1e2x + c2e−2x + 2 e3x
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Figure 141: Slope field plot

Verification of solutions

y = c1e2x + c2e−2x + 2 e3x

Verified OK.

3.2.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
1 (6)

Comparing the above to (5) shows that

s = 4
t = 1

Therefore eq. (4) becomes

z′′(x) = 4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 95: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−2x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to
y1 = z1

= e−2x

Which simplifies to
y1 = e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e−2x
∫ 1

e−4x dx

= e−2x
(
e4x
4

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x)+ c2

(
e−2x

(
e4x
4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−2x + c2e2x
4

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

10 e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e3x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e2x
4 , e−2x

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e3x
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The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

5A1e3x = 10 e3x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e3x

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2e2x

4

)
+
(
2 e3x

)
Summary
The solution(s) found are the following

(1)y = c1e−2x + c2e2x
4 + 2 e3x
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Figure 142: Slope field plot

Verification of solutions

y = c1e−2x + c2e2x
4 + 2 e3x

Verified OK.

3.2.3 Maple step by step solution

Let’s solve
y′′ − 4y = 10 e3x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 4 = 0

• Factor the characteristic polynomial
(r − 2) (r + 2) = 0

• Roots of the characteristic polynomial
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r = (−2, 2)
• 1st solution of the homogeneous ODE

y1(x) = e−2x

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−2x + c2e2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 10 e3x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−2x e2x

−2 e−2x 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 4
◦ Substitute functions into equation for yp(x)

yp(x) = −5 e−2x(∫ e5xdx
)

2 + 5 e2x
(∫

exdx
)

2

◦ Compute integrals
yp(x) = 2 e3x

• Substitute particular solution into general solution to ODE
y = c1e−2x + c2e2x + 2 e3x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$2)-4*y(x)=10*exp(3*x),y(x), singsol=all)� �

y(x) =
(
2 e5x + e4xc1 + c2

)
e−2x

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 29� �
DSolve[y''[x]-4*y[x]==10*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(2e5x + c1e
4x + c2

)
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3.3 problem 3
3.3.1 Solving as second order linear constant coeff ode . . . . . . . . 650
3.3.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
3.3.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 655
3.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 660

Internal problem ID [5138]
Internal file name [OUTPUT/4631_Sunday_June_05_2022_03_02_21_PM_69647471/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 2y′ + y = e−2x

3.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 2, C = 1, f(x) = e−2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 2, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 1 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)

√
(2)2 − (4) (1) (1)

= −1

Hence this is the case of a double root λ1,2 = 1. Therefore the solution is

y = c1e−x + c2x e−x (1)

Therefore the homogeneous solution yh is

yh = c1e−x + x e−xc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, e−x}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e−2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1e−2x = e−2x

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = e−2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2

)
+
(
e−2x)

Which simplifies to
y = e−x(c2x+ c1) + e−2x

Summary
The solution(s) found are the following

(1)y = e−x(c2x+ c1) + e−2x
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Figure 143: Slope field plot

Verification of solutions

y = e−x(c2x+ c1) + e−2x

Verified OK.

3.3.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
2 dx

= ex
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = exe−2x

(y ex) ′′ = exe−2x

Integrating once gives
(y ex)′ = −e−x + c1

Integrating again gives
(y ex) = c1x+ e−x + c2

Hence the solution is

y = c1x+ e−x + c2
ex

Or
y = c1x e−x + c2e−x + e−2x

Summary
The solution(s) found are the following

(1)y = c1x e−x + c2e−x + e−2x

Figure 144: Slope field plot
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Verification of solutions

y = c1x e−x + c2e−x + e−2x

Verified OK.

3.3.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 97: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + y = 0
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The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + x e−xc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e−2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1e−2x = e−2x

Solving for the unknowns by comparing coefficients results in

[A1 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = e−2x

Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2

)
+
(
e−2x)
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Which simplifies to
y = e−x(c2x+ c1) + e−2x

Summary
The solution(s) found are the following

(1)y = e−x(c2x+ c1) + e−2x

Figure 145: Slope field plot

Verification of solutions

y = e−x(c2x+ c1) + e−2x

Verified OK.
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3.3.4 Maple step by step solution

Let’s solve
y′′ + 2y′ + y = e−2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 1 = 0

• Factor the characteristic polynomial
(r + 1)2 = 0

• Root of the characteristic polynomial
r = −1

• 1st solution of the homogeneous ODE
y1(x) = e−x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x e−x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + x e−xc2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = e−2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x x e−x

−e−x e−x − x e−x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−2x

◦ Substitute functions into equation for yp(x)
yp(x) = e−x

(
−
(∫

x e−xdx
)
+
(∫

e−xdx
)
x
)
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◦ Compute integrals
yp(x) = e−2x

• Substitute particular solution into general solution to ODE
y = x e−xc2 + c1e−x + e−2x

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=exp(-2*x),y(x), singsol=all)� �

y(x) = (c1x+ c2) e−x + e−2x

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 24� �
DSolve[y''[x]+2*y'[x]+y[x]==Exp[-2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x(1 + ex(c2x+ c1))
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3.4 problem 4
3.4.1 Solving as second order linear constant coeff ode . . . . . . . . 662
3.4.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 665
3.4.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 670

Internal problem ID [5139]
Internal file name [OUTPUT/4632_Sunday_June_05_2022_03_02_22_PM_3862751/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 25y = 5x2 + x

3.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 25, f(x) = 5x2 + x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 25y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 25. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + 25 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 25 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 25 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (25)

= ±5i

Hence

λ1 = +5i
λ2 = −5i

Which simplifies to
λ1 = 5i
λ2 = −5i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 5. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (5x) + c2 sin (5x))

Or
y = c1 cos (5x) + c2 sin (5x)
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Therefore the homogeneous solution yh is

yh = c1 cos (5x) + c2 sin (5x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (5x) , sin (5x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

25A3x
2 + 25A2x+ 25A1 + 2A3 = 5x2 + x

Solving for the unknowns by comparing coefficients results in[
A1 = − 2

125 , A2 =
1
25 , A3 =

1
5

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
5x

2 + 1
25x− 2

125

Therefore the general solution is

y = yh + yp

= (c1 cos (5x) + c2 sin (5x)) +
(
1
5x

2 + 1
25x− 2

125

)
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Summary
The solution(s) found are the following

(1)y = c1 cos (5x) + c2 sin (5x) +
x2

5 + x

25 − 2
125

Figure 146: Slope field plot

Verification of solutions

y = c1 cos (5x) + c2 sin (5x) +
x2

5 + x

25 − 2
125

Verified OK.

3.4.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 25y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 25

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −25
1 (6)

Comparing the above to (5) shows that

s = −25
t = 1

Therefore eq. (4) becomes

z′′(x) = −25z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 99: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −25 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (5x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (5x)
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Which simplifies to
y1 = cos (5x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (5x)
∫ 1

cos (5x)2
dx

= cos (5x)
(
tan (5x)

5

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (5x)) + c2

(
cos (5x)

(
tan (5x)

5

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 25y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (5x) +
c2 sin (5x)

5
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]
While the set of the basis functions for the homogeneous solution found earlier is{

sin (5x)
5 , cos (5x)

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

25A3x
2 + 25A2x+ 25A1 + 2A3 = 5x2 + x

Solving for the unknowns by comparing coefficients results in[
A1 = − 2

125 , A2 =
1
25 , A3 =

1
5

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
5x

2 + 1
25x− 2

125

Therefore the general solution is

y = yh + yp

=
(
c1 cos (5x) +

c2 sin (5x)
5

)
+
(
1
5x

2 + 1
25x− 2

125

)
Summary
The solution(s) found are the following

(1)y = c1 cos (5x) +
c2 sin (5x)

5 + x2

5 + x

25 − 2
125
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Figure 147: Slope field plot

Verification of solutions

y = c1 cos (5x) +
c2 sin (5x)

5 + x2

5 + x

25 − 2
125

Verified OK.

3.4.3 Maple step by step solution

Let’s solve
y′′ + 25y = 5x2 + x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 25 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−100
)

2

• Roots of the characteristic polynomial
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r = (−5 I, 5 I)
• 1st solution of the homogeneous ODE

y1(x) = cos (5x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (5x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (5x) + c2 sin (5x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 5x2 + x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (5x) sin (5x)
−5 sin (5x) 5 cos (5x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 5
◦ Substitute functions into equation for yp(x)

yp(x) = − cos(5x)
(∫

sin(5x)
(
5x2+x

)
dx
)

5 + sin(5x)
(∫

cos(5x)
(
5x2+x

)
dx
)

5

◦ Compute integrals
yp(x) = 1

5x
2 + 1

25x− 2
125

• Substitute particular solution into general solution to ODE
y = c1 cos (5x) + c2 sin (5x) + x2

5 + x
25 −

2
125
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve(diff(y(x),x$2)+25*y(x)=5*x^2+x,y(x), singsol=all)� �

y(x) = sin (5x) c2 + cos (5x) c1 +
x2

5 + x

25 − 2
125

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 34� �
DSolve[y''[x]+25*y[x]==5*x^2+x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
125
(
25x2 + 5x− 2

)
+ c1 cos(5x) + c2 sin(5x)
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3.5 problem 5
3.5.1 Solving as second order linear constant coeff ode . . . . . . . . 673
3.5.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
3.5.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 678
3.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 683

Internal problem ID [5140]
Internal file name [OUTPUT/4633_Sunday_June_05_2022_03_02_23_PM_47570725/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + y = 4 sin (x)

3.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 1, f(x) = 4 sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2exx (1)

Therefore the homogeneous solution yh is

yh = c1ex + c2x ex

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{exx, ex}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 sin (x)− 2A2 cos (x) = 4 sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 cos (x)

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) + (2 cos (x))

Which simplifies to
y = ex(c2x+ c1) + 2 cos (x)

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) + 2 cos (x)
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Figure 148: Slope field plot

Verification of solutions

y = ex(c2x+ c1) + 2 cos (x)

Verified OK.

3.5.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 4 e−x sin (x)(
e−xy

) ′′ = 4 e−x sin (x)

Integrating once gives (
e−xy

)′ = −2 e−x(sin (x) + cos (x)) + c1

Integrating again gives (
e−xy

)
= c1x+ 2 e−x cos (x) + c2

Hence the solution is

y = c1x+ 2 e−x cos (x) + c2
e−x

Or
y = c1x ex + c2ex + 2 cos (x)

Summary
The solution(s) found are the following

(1)y = c1x ex + c2ex + 2 cos (x)
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Figure 149: Slope field plot

Verification of solutions

y = c1x ex + c2ex + 2 cos (x)

Verified OK.

3.5.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 101: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex + c2x ex

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

4 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{exx, ex}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 sin (x)− 2A2 cos (x) = 4 sin (x)
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Solving for the unknowns by comparing coefficients results in

[A1 = 2, A2 = 0]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 cos (x)

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) + (2 cos (x))

Which simplifies to
y = ex(c2x+ c1) + 2 cos (x)

Summary
The solution(s) found are the following

(1)y = ex(c2x+ c1) + 2 cos (x)

Figure 150: Slope field plot
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Verification of solutions

y = ex(c2x+ c1) + 2 cos (x)

Verified OK.

3.5.4 Maple step by step solution

Let’s solve
y′′ − 2y′ + y = 4 sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the homogeneous ODE
y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = exx

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2x ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 4 sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex exx
ex exx+ ex
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◦ Compute Wronskian
W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)
yp(x) = 4 ex

(
−
(∫

x e−x sin (x) dx
)
+ x
(∫

e−x sin (x) dx
))

◦ Compute integrals
yp(x) = 2 cos (x)

• Substitute particular solution into general solution to ODE
y = c2x ex + c1ex + 2 cos (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+y(x)=4*sin(x),y(x), singsol=all)� �

y(x) = (c1x+ c2) ex + 2 cos (x)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 21� �
DSolve[y''[x]-2*y'[x]+y[x]==4*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2 cos(x) + ex(c2x+ c1)

684
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Internal problem ID [5141]
Internal file name [OUTPUT/4634_Sunday_June_05_2022_03_02_24_PM_54977219/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 4y′ + 5y = 2 e−2x

With initial conditions

[y(0) = 1, y′(0) = −2]

3.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4
q(x) = 5

F = 2 e−2x
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Hence the ode is

y′′ + 4y′ + 5y = 2 e−2x

The domain of p(x) = 4 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 5 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 2 e−2x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

3.6.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 4, C = 5, f(x) = 2 e−2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y′ + 5y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 4, C = 5. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4λ eλx + 5 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4λ+ 5 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 5 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)
√

42 − (4) (1) (5)

= −2± i

Hence

λ1 = −2 + i

λ2 = −2− i

Which simplifies to
λ1 = −2 + i

λ2 = −2− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −2 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e−2x(cos (x) c1 + c2 sin (x))

Therefore the homogeneous solution yh is

yh = e−2x(cos (x) c1 + c2 sin (x))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 e−2x
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x cos (x) , sin (x) e−2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e−2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1e−2x = 2 e−2x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e−2x

Therefore the general solution is

y = yh + yp

=
(
e−2x(cos (x) c1 + c2 sin (x))

)
+
(
2 e−2x)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = e−2x(cos (x) c1 + c2 sin (x)) + 2 e−2x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = 2 + c1 (1A)
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Taking derivative of the solution gives

y′ = −2 e−2x(cos (x) c1 + c2 sin (x)) + e−2x(− sin (x) c1 + c2 cos (x))− 4 e−2x

substituting y′ = −2 and x = 0 in the above gives

−2 = −2c1 + c2 − 4 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 0

Substituting these values back in above solution results in

y = −e−2x cos (x) + 2 e−2x

Which simplifies to
y = −e−2x(−2 + cos (x))

Summary
The solution(s) found are the following

(1)y = −e−2x(−2 + cos (x))

(a) Solution plot (b) Slope field plot

Verification of solutions

y = −e−2x(−2 + cos (x))

Verified OK.
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3.6.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y′ + 5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4 (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 103: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4
1 dx
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= z1e
−2x

= z1
(
e−2x)

Which simplifies to
y1 = e−2x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4

1 dx

(y1)2
dx

= y1

∫
e−4x

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x cos (x)

)
+ c2

(
e−2x cos (x) (tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y′ + 5y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e−2x cos (x) c1 + e−2x sin (x) c2

692



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 e−2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x cos (x) , sin (x) e−2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e−2x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

A1e−2x = 2 e−2x

Solving for the unknowns by comparing coefficients results in

[A1 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2 e−2x

Therefore the general solution is

y = yh + yp

=
(
e−2x cos (x) c1 + e−2x sin (x) c2

)
+
(
2 e−2x)

Which simplifies to

y = e−2x(cos (x) c1 + c2 sin (x)) + 2 e−2x

693



Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = e−2x(cos (x) c1 + c2 sin (x)) + 2 e−2x (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = 2 + c1 (1A)

Taking derivative of the solution gives

y′ = −2 e−2x(cos (x) c1 + c2 sin (x)) + e−2x(− sin (x) c1 + c2 cos (x))− 4 e−2x

substituting y′ = −2 and x = 0 in the above gives

−2 = −2c1 + c2 − 4 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 0

Substituting these values back in above solution results in

y = −e−2x cos (x) + 2 e−2x

Which simplifies to
y = −e−2x(−2 + cos (x))

Summary
The solution(s) found are the following

(1)y = −e−2x(−2 + cos (x))
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −e−2x(−2 + cos (x))

Verified OK.

3.6.4 Maple step by step solution

Let’s solve[
y′′ + 4y′ + 5y = 2 e−2x, y(0) = 1, y′

∣∣∣{x=0}
= −2

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 5 = 0

• Use quadratic formula to solve for r

r = (−4)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−2− I,−2 + I)

• 1st solution of the homogeneous ODE
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y1(x) = e−2x cos (x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (x) e−2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = e−2x cos (x) c1 + e−2x sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2 e−2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−2x cos (x) sin (x) e−2x

−2 e−2x cos (x)− sin (x) e−2x e−2x cos (x)− 2 sin (x) e−2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−4x

◦ Substitute functions into equation for yp(x)
yp(x) = −2 e−2x(cos (x) (∫ sin (x) dx

)
− sin (x)

(∫
cos (x) dx

))
◦ Compute integrals

yp(x) = 2 e−2x

• Substitute particular solution into general solution to ODE
y = e−2x cos (x) c1 + e−2x sin (x) c2 + 2 e−2x

� Check validity of solution y = e−2x cos (x) c1 + e−2x sin (x) c2 + 2e−2x

◦ Use initial condition y(0) = 1
1 = 2 + c1

◦ Compute derivative of the solution
y′ = −2 e−2x cos (x) c1 − e−2x sin (x) c1 − 2 e−2x sin (x) c2 + e−2x cos (x) c2 − 4 e−2x

◦ Use the initial condition y′
∣∣∣{x=0}

= −2

−2 = −2c1 + c2 − 4
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◦ Solve for c1 and c2

{c1 = −1, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = −e−2x(−2 + cos (x))
• Solution to the IVP

y = −e−2x(−2 + cos (x))

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 14� �
dsolve([diff(y(x),x$2)+4*diff(y(x),x)+5*y(x)=2*exp(-2*x),y(0) = 1, D(y)(0) = -2],y(x), singsol=all)� �

y(x) = −e−2x(cos (x)− 2)

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 16� �
DSolve[{y''[x]+4*y'[x]+5*y[x]==2*Exp[-2*x],{y[0]==1,y'[0]==-2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e−2x(cos(x)− 2)
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3.7 problem 7
3.7.1 Solving as second order linear constant coeff ode . . . . . . . . 698
3.7.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 701
3.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 706

Internal problem ID [5142]
Internal file name [OUTPUT/4635_Sunday_June_05_2022_03_02_25_PM_2136530/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

3y′′ − 2y′ − y = 2x− 3

3.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 3, B = −2, C = −1, f(x) = 2x− 3. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

3y′′ − 2y′ − y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 3, B = −2, C = −1. Let the solution be y = eλx. Substituting
this into the ODE gives

3λ2eλx − 2λ eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

3λ2 − 2λ− 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 3, B = −2, C = −1 into the above gives

λ1,2 =
2

(2) (3) ±
1

(2) (3)
√

−22 − (4) (3) (−1)

= 1
3 ± 2

3
Hence

λ1 =
1
3 + 2

3

λ2 =
1
3 − 2

3

Which simplifies to
λ1 = 1

λ2 = −1
3

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(1)x + c2e

(
− 1

3
)
x

Or
y = c1ex + c2e−

x
3

Therefore the homogeneous solution yh is

yh = c1ex + c2e−
x
3

699



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is{
ex, e−x

3
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A2x− A1 − 2A2 = 2x− 3

Solving for the unknowns by comparing coefficients results in

[A1 = 7, A2 = −2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −2x+ 7

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e−

x
3
)
+ (−2x+ 7)

Summary
The solution(s) found are the following

(1)y = c1ex + c2e−
x
3 − 2x+ 7
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Figure 153: Slope field plot

Verification of solutions

y = c1ex + c2e−
x
3 − 2x+ 7

Verified OK.

3.7.2 Solving using Kovacic algorithm

Writing the ode as

3y′′ − 2y′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 3
B = −2 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 4
9 (6)

Comparing the above to (5) shows that

s = 4
t = 9

Therefore eq. (4) becomes

z′′(x) = 4z(x)
9 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 105: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 4
9 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 2x
3

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
3 dx

= z1e
x
3

= z1
(
ex

3
)

Which simplifies to
y1 = e−x

3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

3 dx

(y1)2
dx

= y1

∫
e

2x
3

(y1)2
dx

= y1

(
3 e 4x

3

4

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x

3
)
+ c2

(
e−x

3

(
3 e 4x

3

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

3y′′ − 2y′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
3 + 3c2ex

4

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is{
3 ex
4 , e−x

3

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A2x− A1 − 2A2 = 2x− 3

Solving for the unknowns by comparing coefficients results in

[A1 = 7, A2 = −2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = −2x+ 7

Therefore the general solution is

y = yh + yp

=
(
c1e−

x
3 + 3c2ex

4

)
+ (−2x+ 7)

Summary
The solution(s) found are the following

(1)y = c1e−
x
3 + 3c2ex

4 − 2x+ 7
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Figure 154: Slope field plot

Verification of solutions

y = c1e−
x
3 + 3c2ex

4 − 2x+ 7

Verified OK.

3.7.3 Maple step by step solution

Let’s solve
3y′′ − 2y′ − y = 2x− 3

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y′

3 + y
3 +

2x
3 − 1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 2y′

3 − y
3 = 2x

3 − 1

• Characteristic polynomial of homogeneous ODE
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r2 − 2
3r −

1
3 = 0

• Factor the characteristic polynomial
(3r+1)(r−1)

3 = 0

• Roots of the characteristic polynomial
r =

(
1,−1

3

)
• 1st solution of the homogeneous ODE

y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e−x

3

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2e−

x
3 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2x

3 − 1
]

◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e−x
3

ex − e−
x
3

3


◦ Compute Wronskian

W (y1(x) , y2(x)) = −4 e
2x
3

3

◦ Substitute functions into equation for yp(x)

yp(x) = ex
(∫

(2x−3)e−xdx
)

4 −
e−

x
3
(∫

(2x−3)e
x
3 dx

)
4

◦ Compute integrals
yp(x) = −2x+ 7

• Substitute particular solution into general solution to ODE
y = c1ex + c2e−

x
3 − 2x+ 7
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(3*diff(y(x),x$2)-2*diff(y(x),x)-y(x)=2*x-3,y(x), singsol=all)� �

y(x) = e−x
3 c2 + exc1 − 2x+ 7

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 26� �
DSolve[3*y''[x]-2*y'[x]-y[x]==2*x-3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2x+ c1e
−x/3 + c2e

x + 7
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3.8 problem 8
3.8.1 Solving as second order linear constant coeff ode . . . . . . . . 709
3.8.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 712
3.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 718

Internal problem ID [5143]
Internal file name [OUTPUT/4636_Sunday_June_05_2022_03_02_26_PM_85407740/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Test Excercise 25. page 1093
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 6y′ + 8y = 8 e4x

3.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −6, C = 8, f(x) = 8 e4x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 6y′ + 8y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −6, C = 8. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 6λ eλx + 8 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 6λ+ 8 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −6, C = 8 into the above gives

λ1,2 =
6

(2) (1) ±
1

(2) (1)
√
−62 − (4) (1) (8)

= 3± 1

Hence
λ1 = 3 + 1
λ2 = 3− 1

Which simplifies to
λ1 = 4
λ2 = 2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(4)x + c2e

(2)x

Or
y = c1e4x + c2e2x

Therefore the homogeneous solution yh is

yh = c1e4x + c2e2x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

8 e4x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e4x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e2x, e4x}

Since e4x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e4x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e4x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

2A1e4x = 8 e4x

Solving for the unknowns by comparing coefficients results in

[A1 = 4]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 4x e4x

Therefore the general solution is

y = yh + yp

=
(
c1e4x + c2e2x

)
+
(
4x e4x

)
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Summary
The solution(s) found are the following

(1)y = c1e4x + c2e2x + 4x e4x

Figure 155: Slope field plot

Verification of solutions

y = c1e4x + c2e2x + 4x e4x

Verified OK.

3.8.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 6y′ + 8y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −6 (3)
C = 8
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 107: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6
1 dx

= z1e
3x

= z1
(
e3x
)
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Which simplifies to
y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6

1 dx

(y1)2
dx

= y1

∫
e6x

(y1)2
dx

= y1

(
e2x
2

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x
(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 6y′ + 8y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e2x +
c2e4x
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of

715



parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e2x

y2 =
e4x
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e2x e4x

2

d
dx
(e2x) d

dx

(
e4x
2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
2x e4x

2

2 e2x 2 e4x

∣∣∣∣∣∣
Therefore

W =
(
e2x
) (

2 e4x
)
−
(
e4x
2

)(
2 e2x

)
Which simplifies to

W = e2xe4x
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Which simplifies to
W = e6x

Therefore Eq. (2) becomes

u1 = −
∫ 4 e8x

e6x dx

Which simplifies to

u1 = −
∫

4 e2xdx

Hence
u1 = −2 e2x

And Eq. (3) becomes

u2 =
∫ 8 e2xe4x

e6x dx

Which simplifies to

u2 =
∫

8dx

Hence
u2 = 8x

Therefore the particular solution, from equation (1) is

yp(x) = −2 e4x + 4x e4x

Which simplifies to
yp(x) = (4x− 2) e4x

Therefore the general solution is

y = yh + yp

=
(
c1e2x +

c2e4x
2

)
+
(
(4x− 2) e4x

)
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Summary
The solution(s) found are the following

(1)y = c1e2x +
c2e4x
2 + (4x− 2) e4x

Figure 156: Slope field plot

Verification of solutions

y = c1e2x +
c2e4x
2 + (4x− 2) e4x

Verified OK.

3.8.3 Maple step by step solution

Let’s solve
y′′ − 6y′ + 8y = 8 e4x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 − 6r + 8 = 0
• Factor the characteristic polynomial

(r − 2) (r − 4) = 0
• Roots of the characteristic polynomial

r = (2, 4)
• 1st solution of the homogeneous ODE

y1(x) = e2x

• 2nd solution of the homogeneous ODE
y2(x) = e4x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e2x + c2e4x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 8 e4x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e2x e4x

2 e2x 4 e4x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2 e6x

◦ Substitute functions into equation for yp(x)
yp(x) = −4 e2x

(∫
e2xdx

)
+ 4 e4x

(∫
1dx
)

◦ Compute integrals
yp(x) = (4x− 2) e4x

• Substitute particular solution into general solution to ODE
y = c1e2x + c2e4x + (4x− 2) e4x
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)-6*diff(y(x),x)+8*y(x)=8*exp(4*x),y(x), singsol=all)� �

y(x) = (8x+ c1 − 4) e4x
2 + c2e2x

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 27� �
DSolve[y''[x]-6*y'[x]+8*y[x]==8*Exp[4*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
2x + e4x(4x− 2 + c2)
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4 Program 25. Second order differential equations.
Further problems 25. page 1094

4.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722
4.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
4.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
4.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
4.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
4.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
4.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
4.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
4.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
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4.11 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
4.12 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
4.13 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
4.14 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
4.15 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
4.16 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
4.17 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917
4.18 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
4.19 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
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4.1 problem 1
4.1.1 Solving as second order linear constant coeff ode . . . . . . . . 722
4.1.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 725
4.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 730

Internal problem ID [5144]
Internal file name [OUTPUT/4637_Sunday_June_05_2022_03_02_27_PM_83965471/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 1.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

2y′′ − 7y′ − 4y = e3x

4.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 2, B = −7, C = −4, f(x) = e3x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

2y′′ − 7y′ − 4y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 2, B = −7, C = −4. Let the solution be y = eλx. Substituting
this into the ODE gives

2λ2eλx − 7λ eλx − 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

2λ2 − 7λ− 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 2, B = −7, C = −4 into the above gives

λ1,2 =
7

(2) (2) ±
1

(2) (2)
√

−72 − (4) (2) (−4)

= 7
4 ± 9

4
Hence

λ1 =
7
4 + 9

4

λ2 =
7
4 − 9

4

Which simplifies to
λ1 = 4

λ2 = −1
2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(4)x + c2e

(
− 1

2
)
x

Or
y = c1e4x + c2e−

x
2

Therefore the homogeneous solution yh is

yh = c1e4x + c2e−
x
2
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e3x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e4x, e−x

2
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e3x

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−7A1e3x = e3x

Solving for the unknowns by comparing coefficients results in[
A1 = −1

7

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −e3x
7

Therefore the general solution is

y = yh + yp

=
(
c1e4x + c2e−

x
2
)
+
(
−e3x

7

)
Summary
The solution(s) found are the following

(1)y = c1e4x + c2e−
x
2 − e3x

7
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Figure 157: Slope field plot

Verification of solutions

y = c1e4x + c2e−
x
2 − e3x

7

Verified OK.

4.1.2 Solving using Kovacic algorithm

Writing the ode as

2y′′ − 7y′ − 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2
B = −7 (3)
C = −4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 81
16 (6)

Comparing the above to (5) shows that

s = 81
t = 16

Therefore eq. (4) becomes

z′′(x) = 81z(x)
16 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 109: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 81
16 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 9x
4

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−7
2 dx

= z1e
7x
4

= z1
(
e 7x

4

)
Which simplifies to

y1 = e−x
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−7

2 dx

(y1)2
dx

= y1

∫
e

7x
2

(y1)2
dx

= y1

(
2 e 9x

2

9

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x

2
)
+ c2

(
e−x

2

(
2 e 9x

2

9

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

2y′′ − 7y′ − 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−
x
2 + 2c2e4x

9

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e3x}]

While the set of the basis functions for the homogeneous solution found earlier is{
2 e4x
9 , e−x

2

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e3x
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The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−7A1e3x = e3x

Solving for the unknowns by comparing coefficients results in[
A1 = −1

7

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −e3x
7

Therefore the general solution is

y = yh + yp

=
(
c1e−

x
2 + 2c2e4x

9

)
+
(
−e3x

7

)

Summary
The solution(s) found are the following

(1)y = c1e−
x
2 + 2c2e4x

9 − e3x
7
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Figure 158: Slope field plot

Verification of solutions

y = c1e−
x
2 + 2c2e4x

9 − e3x
7

Verified OK.

4.1.3 Maple step by step solution

Let’s solve
2y′′ − 7y′ − 4y = e3x

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 7y′

2 + 2y + e3x
2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 7y′

2 − 2y = e3x
2

• Characteristic polynomial of homogeneous ODE
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r2 − 7
2r − 2 = 0

• Factor the characteristic polynomial
(2r+1)(r−4)

2 = 0

• Roots of the characteristic polynomial
r =

(
4,−1

2

)
• 1st solution of the homogeneous ODE

y1(x) = e4x

• 2nd solution of the homogeneous ODE
y2(x) = e−x

2

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e4x + c2e−

x
2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = e3x

2

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e4x e−x
2

4 e4x − e−
x
2

2


◦ Compute Wronskian

W (y1(x) , y2(x)) = −9 e
7x
2

2

◦ Substitute functions into equation for yp(x)

yp(x) = e4x
(∫

e−xdx
)

9 −
e−

x
2
(∫

e
7x
2 dx

)
9

◦ Compute integrals
yp(x) = − e3x

7

• Substitute particular solution into general solution to ODE
y = c1e4x + c2e−

x
2 − e3x

7
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(2*diff(y(x),x$2)-7*diff(y(x),x)-4*y(x)=exp(3*x),y(x), singsol=all)� �

y(x) = e−x
2 c2 + e4xc1 −

e3x
7

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 33� �
DSolve[2*y''[x]-7*y'[x]-4*y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e3x

7 + c1e
−x/2 + c2e

4x
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4.2 problem 2
4.2.1 Solving as second order linear constant coeff ode . . . . . . . . 733
4.2.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
4.2.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 738
4.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 743

Internal problem ID [5145]
Internal file name [OUTPUT/4638_Sunday_June_05_2022_03_02_28_PM_90662562/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 6y′ + 9y = 54x+ 18

4.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −6, C = 9, f(x) = 54x+ 18. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 6y′ + 9y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −6, C = 9. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 6λ eλx + 9 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 6λ+ 9 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −6, C = 9 into the above gives

λ1,2 =
6

(2) (1) ±
1

(2) (1)

√
(−6)2 − (4) (1) (9)

= 3

Hence this is the case of a double root λ1,2 = −3. Therefore the solution is

y = c1e3x + c2e3xx (1)

Therefore the homogeneous solution yh is

yh = e3xc1 + c2x e3x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e3xx, e3x}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

9A2x+ 9A1 − 6A2 = 54x+ 18

Solving for the unknowns by comparing coefficients results in

[A1 = 6, A2 = 6]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 6x+ 6

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2x e3x

)
+ (6x+ 6)

Which simplifies to
y = e3x(c2x+ c1) + 6x+ 6

Summary
The solution(s) found are the following

(1)y = e3x(c2x+ c1) + 6x+ 6
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Figure 159: Slope field plot

Verification of solutions

y = e3x(c2x+ c1) + 6x+ 6

Verified OK.

4.2.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −6. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−6 dx

= e−3x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = e−3x(54x+ 18)(
e−3xy

) ′′ = e−3x(54x+ 18)

Integrating once gives (
e−3xy

)′ = (−12− 18x) e−3x + c1

Integrating again gives (
e−3xy

)
= (6x+ 6) e−3x + c1x+ c2

Hence the solution is

y = (6x+ 6) e−3x + c1x+ c2
e−3x

Or
y = c1x e3x + c2e3x + 6x+ 6

Summary
The solution(s) found are the following

(1)y = c1x e3x + c2e3x + 6x+ 6
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Figure 160: Slope field plot

Verification of solutions

y = c1x e3x + c2e3x + 6x+ 6

Verified OK.

4.2.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − 6y′ + 9y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −6 (3)
C = 9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 111: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−6
1 dx

= z1e
3x

= z1
(
e3x
)

Which simplifies to
y1 = e3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−6

1 dx

(y1)2
dx

= y1

∫
e6x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e3x
)
+ c2

(
e3x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 6y′ + 9y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e3xc1 + c2x e3x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x+ 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e3xx, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

9A2x+ 9A1 − 6A2 = 54x+ 18

741



Solving for the unknowns by comparing coefficients results in

[A1 = 6, A2 = 6]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 6x+ 6

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2x e3x

)
+ (6x+ 6)

Which simplifies to
y = e3x(c2x+ c1) + 6x+ 6

Summary
The solution(s) found are the following

(1)y = e3x(c2x+ c1) + 6x+ 6

Figure 161: Slope field plot
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Verification of solutions

y = e3x(c2x+ c1) + 6x+ 6

Verified OK.

4.2.4 Maple step by step solution

Let’s solve
y′′ − 6y′ + 9y = 54x+ 18

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 6r + 9 = 0

• Factor the characteristic polynomial
(r − 3)2 = 0

• Root of the characteristic polynomial
r = 3

• 1st solution of the homogeneous ODE
y1(x) = e3x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = e3xx

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = e3xc1 + c2x e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 54x+ 18

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e3x e3xx
3 e3x 3 e3xx+ e3x
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◦ Compute Wronskian
W (y1(x) , y2(x)) = e6x

◦ Substitute functions into equation for yp(x)
yp(x) = 18 e3x

(
−
(∫

(3x2 + x) e−3xdx
)
+
(∫

e−3x(3x+ 1) dx
)
x
)

◦ Compute integrals
yp(x) = 6x+ 6

• Substitute particular solution into general solution to ODE
y = c2x e3x + e3xc1 + 6x+ 6

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$2)-6*diff(y(x),x)+9*y(x)=54*x+18,y(x), singsol=all)� �

y(x) = (c1x+ c2) e3x + 6x+ 6

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 27� �
DSolve[y''[x]-6*y'[x]+9*y[x]==54*x+18,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
3x + x

(
6 + c2e

3x)+ 6
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4.3 problem 3
4.3.1 Solving as second order linear constant coeff ode . . . . . . . . 745
4.3.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 748
4.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 753

Internal problem ID [5146]
Internal file name [OUTPUT/4639_Sunday_June_05_2022_03_02_29_PM_29408844/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 5y′ + 6y = 100 sin (4x)

4.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −5, C = 6, f(x) = 100 sin (4x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 5y′ + 6y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −5, C = 6. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 5λ eλx + 6 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 5λ+ 6 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −5, C = 6 into the above gives

λ1,2 =
5

(2) (1) ±
1

(2) (1)
√
−52 − (4) (1) (6)

= 5
2 ± 1

2
Hence

λ1 =
5
2 + 1

2

λ2 =
5
2 − 1

2

Which simplifies to
λ1 = 3
λ2 = 2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(2)x

Or
y = e3xc1 + c2e2x

Therefore the homogeneous solution yh is

yh = e3xc1 + c2e2x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

100 sin (4x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (4x) , sin (4x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e2x, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (4x) + A2 sin (4x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−10A1 cos (4x)− 10A2 sin (4x) + 20A1 sin (4x)− 20A2 cos (4x) = 100 sin (4x)

Solving for the unknowns by comparing coefficients results in

[A1 = 4, A2 = −2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 4 cos (4x)− 2 sin (4x)

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2e2x

)
+ (4 cos (4x)− 2 sin (4x))

Summary
The solution(s) found are the following

(1)y = e3xc1 + c2e2x + 4 cos (4x)− 2 sin (4x)
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Figure 162: Slope field plot

Verification of solutions

y = e3xc1 + c2e2x + 4 cos (4x)− 2 sin (4x)

Verified OK.

4.3.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 5y′ + 6y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −5 (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 113: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−5
1 dx

= z1e
5x
2

= z1
(
e 5x

2

)
Which simplifies to

y1 = e2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−5

1 dx

(y1)2
dx

= y1

∫
e5x

(y1)2
dx

= y1(ex)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2x
)
+ c2

(
e2x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 5y′ + 6y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e2x + c2e3x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

100 sin (4x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (4x) , sin (4x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e2x, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (4x) + A2 sin (4x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−10A1 cos (4x)− 10A2 sin (4x) + 20A1 sin (4x)− 20A2 cos (4x) = 100 sin (4x)
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Solving for the unknowns by comparing coefficients results in

[A1 = 4, A2 = −2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 4 cos (4x)− 2 sin (4x)

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2e3x

)
+ (4 cos (4x)− 2 sin (4x))

Summary
The solution(s) found are the following

(1)y = c1e2x + c2e3x + 4 cos (4x)− 2 sin (4x)

Figure 163: Slope field plot

Verification of solutions

y = c1e2x + c2e3x + 4 cos (4x)− 2 sin (4x)

Verified OK.
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4.3.3 Maple step by step solution

Let’s solve
y′′ − 5y′ + 6y = 100 sin (4x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 5r + 6 = 0

• Factor the characteristic polynomial
(r − 2) (r − 3) = 0

• Roots of the characteristic polynomial
r = (2, 3)

• 1st solution of the homogeneous ODE
y1(x) = e2x

• 2nd solution of the homogeneous ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e2x + c2e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 100 sin (4x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e2x e3x

2 e2x 3 e3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e5x

◦ Substitute functions into equation for yp(x)
yp(x) = −100 e2x

(∫
sin (4x) e−2xdx

)
+ 100 e3x

(∫
sin (4x) e−3xdx

)
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◦ Compute integrals
yp(x) = 4 cos (4x)− 2 sin (4x)

• Substitute particular solution into general solution to ODE
y = c1e2x + c2e3x + 4 cos (4x)− 2 sin (4x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)-5*diff(y(x),x)+6*y(x)=100*sin(4*x),y(x), singsol=all)� �

y(x) = e3xc2 + e2xc1 − 2 sin (4x) + 4 cos (4x)

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 33� �
DSolve[y''[x]-5*y'[x]+6*y[x]==100*Sin[4*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 sin(4x) + 4 cos(4x) + e2x(c2ex + c1)
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4.4 problem 4
4.4.1 Solving as second order linear constant coeff ode . . . . . . . . 755
4.4.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
4.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 761
4.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 767

Internal problem ID [5147]
Internal file name [OUTPUT/4640_Sunday_June_05_2022_03_02_30_PM_30171949/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 2y′ + y = 4 sinh (x)

4.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 2, C = 1, f(x) = 4 sinh (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 2, C = 1. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 1 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)

√
(2)2 − (4) (1) (1)

= −1

Hence this is the case of a double root λ1,2 = 1. Therefore the solution is

y = c1e−x + c2x e−x (1)

Therefore the homogeneous solution yh is

yh = c1e−x + x e−xc2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 = x e−x
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In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x x e−x

d
dx
(e−x) d

dx
(x e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
−x x e−x

−e−x e−x − x e−x

∣∣∣∣∣∣
Therefore

W =
(
e−x
) (

e−x − x e−x
)
−
(
x e−x

) (
−e−x

)
Which simplifies to

W = e−2x

Which simplifies to
W = e−2x

Therefore Eq. (2) becomes

u1 = −
∫ 4x e−x sinh (x)

e−2x dx

Which simplifies to

u1 = −
∫

4 sinh (x)x exdx
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Hence

u1 = −2 sinh (x)x cosh (x) + x2 + cosh (x)2 − 2x cosh (x)2 + cosh (x) sinh (x) + x

And Eq. (3) becomes

u2 =
∫ 4 e−x sinh (x)

e−2x dx

Which simplifies to

u2 =
∫

4 ex sinh (x) dx

Hence
u2 = 2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2

Which simplifies to

u1 = (1− 2x) cosh (x)2 + (1− 2x) sinh (x) cosh (x) + x2 + x

u2 = 2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2

Therefore the particular solution, from equation (1) is

yp(x) =
(
(1− 2x) cosh (x)2 + (1− 2x) sinh (x) cosh (x) + x2 + x

)
e−x

+
(
2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2

)
x e−x

Which simplifies to

yp(x) = e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2

)
+
(
e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

))
Which simplifies to

y = e−x(c2x+ c1) + e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
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Summary
The solution(s) found are the following

(1)y = e−x(c2x+ c1) + e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)

Figure 164: Slope field plot

Verification of solutions

y = e−x(c2x+ c1) + e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
Verified OK.

4.4.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
2 dx

= ex
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 4 ex sinh (x)

(y ex) ′′ = 4 ex sinh (x)

Integrating once gives

(y ex)′ = 2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2 + c1

Integrating again gives

(y ex) = cosh (x)2 + cosh (x) sinh (x)− x(x− c1 − 1) + c2

Hence the solution is

y = cosh (x)2 + cosh (x) sinh (x)− x(x− c1 − 1) + c2
ex

Or

y = c1x e−x − x2e−x + e−x cosh (x)2 + sinh (x) e−x cosh (x) + c2e−x + x e−x

Summary
The solution(s) found are the following

(1)y = c1x e−x − x2e−x + e−x cosh (x)2 + sinh (x) e−x cosh (x) + c2e−x + x e−x
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Figure 165: Slope field plot

Verification of solutions

y = c1x e−x − x2e−x + e−x cosh (x)2 + sinh (x) e−x cosh (x) + c2e−x + x e−x

Verified OK.

4.4.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 115: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + x e−xc2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 = x e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x x e−x

d
dx
(e−x) d

dx
(x e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e
−x x e−x

−e−x e−x − x e−x

∣∣∣∣∣∣
Therefore

W =
(
e−x
) (

e−x − x e−x
)
−
(
x e−x

) (
−e−x

)
Which simplifies to

W = e−2x

Which simplifies to
W = e−2x

Therefore Eq. (2) becomes

u1 = −
∫ 4x e−x sinh (x)

e−2x dx

Which simplifies to

u1 = −
∫

4 sinh (x)x exdx

Hence

u1 = −2 sinh (x)x cosh (x) + x2 + cosh (x)2 − 2x cosh (x)2 + cosh (x) sinh (x) + x

And Eq. (3) becomes

u2 =
∫ 4 e−x sinh (x)

e−2x dx
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Which simplifies to

u2 =
∫

4 ex sinh (x) dx

Hence
u2 = 2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2

Which simplifies to

u1 = (1− 2x) cosh (x)2 + (1− 2x) sinh (x) cosh (x) + x2 + x

u2 = 2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2

Therefore the particular solution, from equation (1) is

yp(x) =
(
(1− 2x) cosh (x)2 + (1− 2x) sinh (x) cosh (x) + x2 + x

)
e−x

+
(
2 cosh (x) sinh (x)− 2x+ 2 cosh (x)2

)
x e−x

Which simplifies to

yp(x) = e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
Therefore the general solution is

y = yh + yp

=
(
c1e−x + x e−xc2

)
+
(
e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

))
Which simplifies to

y = e−x(c2x+ c1) + e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
Summary
The solution(s) found are the following

(1)y = e−x(c2x+ c1) + e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
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Figure 166: Slope field plot

Verification of solutions

y = e−x(c2x+ c1) + e−x
(
cosh (x) sinh (x) + cosh (x)2 − x2 + x

)
Verified OK.

4.4.4 Maple step by step solution

Let’s solve
y′′ + 2y′ + y = 4 sinh (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 1 = 0

• Factor the characteristic polynomial
(r + 1)2 = 0

• Root of the characteristic polynomial
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r = −1
• 1st solution of the homogeneous ODE

y1(x) = e−x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x e−x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + x e−xc2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 4 sinh (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x x e−x

−e−x e−x − x e−x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−2x

◦ Substitute functions into equation for yp(x)
yp(x) = 4 e−x

(
−
(∫

sinh (x)x exdx
)
+ x
(∫

ex sinh (x) dx
))

◦ Compute integrals

yp(x) = e−x
(
−2x2+2x+1+sinh(2x)+cosh(2x)

)
2

• Substitute particular solution into general solution to ODE

y = c1e−x + x e−xc2 + e−x
(
−2x2+2x+1+sinh(2x)+cosh(2x)

)
2
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 32� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+y(x)=4*sinh(x),y(x), singsol=all)� �

y(x) = (−2x2 + (2c1 + 2)x+ 2c2 + 1) e−x

2 + ex
2

3 Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 31� �
DSolve[y''[x]+2*y'[x]+y[x]==4*Sinh[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex

2 + e−x
(
−x2 + c2x+ c1

)
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4.5 problem 5
4.5.1 Solving as second order linear constant coeff ode . . . . . . . . 770
4.5.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 775
4.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 781

Internal problem ID [5148]
Internal file name [OUTPUT/4641_Sunday_June_05_2022_03_02_31_PM_72953435/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + y′ − 2y = 2 cosh (2x)

4.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 1, C = −2, f(x) = 2 cosh (2x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + y′ − 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 1, C = −2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + λ eλx − 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + λ− 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 1, C = −2 into the above gives

λ1,2 =
−1

(2) (1) ±
1

(2) (1)
√
12 − (4) (1) (−2)

= −1
2 ± 3

2
Hence

λ1 = −1
2 + 3

2

λ2 = −1
2 − 3

2

Which simplifies to
λ1 = 1
λ2 = −2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(1)x + c2e

(−2)x

Or
y = c1ex + c2e−2x

Therefore the homogeneous solution yh is

yh = c1ex + c2e−2x
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = e−2x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ ex e−2x

d
dx
(ex) d

dx
(e−2x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x e−2x

ex −2 e−2x

∣∣∣∣∣∣
Therefore

W = (ex)
(
−2 e−2x)− (e−2x) (ex)

Which simplifies to
W = −3 exe−2x
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Which simplifies to
W = −3 e−x

Therefore Eq. (2) becomes

u1 = −
∫ 2 e−2x cosh (2x)

−3 e−x
dx

Which simplifies to

u1 = −
∫

−2 e−x cosh (2x)
3 dx

Hence

u1 =
sinh (x)

3 + sinh (3x)
9 + cosh (x)

3 − cosh (3x)
9

And Eq. (3) becomes

u2 =
∫ 2 ex cosh (2x)

−3 e−x
dx

Which simplifies to

u2 =
∫

−2 cosh (2x) e2x
3 dx

Hence

u2 = −cosh (2x)2

6 − cosh (2x) sinh (2x)
6 − x

3

Which simplifies to

u1 =
sinh (x)

3 + sinh (3x)
9 + cosh (x)

3 − cosh (3x)
9

u2 = −x

3 − cosh (4x)
12 − 1

12 − sinh (4x)
12

Therefore the particular solution, from equation (1) is

yp(x) =
(
sinh (x)

3 + sinh (3x)
9 + cosh (x)

3 − cosh (3x)
9

)
ex

+
(
−x

3 − cosh (4x)
12 − 1

12 − sinh (4x)
12

)
e−2x
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Which simplifies to

yp(x) =

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3

Therefore the general solution is

y = yh + yp

=
(
c1ex + c2e−2x)
+

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3


Summary
The solution(s) found are the following

(1)y = c1ex + c2e−2x

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3

Figure 167: Slope field plot
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Verification of solutions

y = c1ex + c2e−2x

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3

Verified OK.

4.5.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 1 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
4 (6)

Comparing the above to (5) shows that

s = 9
t = 4
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Therefore eq. (4) becomes

z′′(x) = 9z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 117: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 9
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 3x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
1
1 dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 1

1 dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

(
e3x
3

)
Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x)+ c2

(
e−2x

(
e3x
3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + y′ − 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−2x + c2ex
3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−2x

y2 =
ex
3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−2x ex
3

d
dx
(e−2x) d

dx

( ex
3

)
∣∣∣∣∣∣
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Which gives

W =

∣∣∣∣∣∣ e−2x ex
3

−2 e−2x ex
3

∣∣∣∣∣∣
Therefore

W =
(
e−2x)(ex

3

)
−
(
ex
3

)(
−2 e−2x)

Which simplifies to
W = exe−2x

Which simplifies to
W = e−x

Therefore Eq. (2) becomes

u1 = −
∫ 2 ex cosh(2x)

3
e−x

dx

Which simplifies to

u1 = −
∫ 2 cosh (2x) e2x

3 dx

Hence

u1 = −cosh (2x)2

6 − cosh (2x) sinh (2x)
6 − x

3

And Eq. (3) becomes

u2 =
∫ 2 e−2x cosh (2x)

e−x
dx

Which simplifies to

u2 =
∫

2 e−x cosh (2x) dx

Hence

u2 = sinh (x) + sinh (3x)
3 + cosh (x)− cosh (3x)

3
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Which simplifies to

u1 = −x

3 − cosh (4x)
12 − 1

12 − sinh (4x)
12

u2 = sinh (x) + sinh (3x)
3 + cosh (x)− cosh (3x)

3

Therefore the particular solution, from equation (1) is

yp(x) =
(
−x

3 − cosh (4x)
12 − 1

12 − sinh (4x)
12

)
e−2x

+

(
sinh (x) + sinh(3x)

3 + cosh (x)− cosh(3x)
3

)
ex

3

Which simplifies to

yp(x) =

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2ex

3

)

+

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3


Summary
The solution(s) found are the following

(1)y = c1e−2x + c2ex
3

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3
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Figure 168: Slope field plot

Verification of solutions

y = c1e−2x + c2ex
3

−
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 − 2 cosh (x)− 2 sinh(x)

3

)
e3x + 2 cosh (x)4 + 2 cosh (x)3 sinh (x)− 2 cosh (x)2 − cosh (x) sinh (x) + x+ 1

2

)
3

Verified OK.

4.5.3 Maple step by step solution

Let’s solve
y′′ + y′ − 2y = 2 cosh (2x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + r − 2 = 0

• Factor the characteristic polynomial
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(r + 2) (r − 1) = 0
• Roots of the characteristic polynomial

r = (−2, 1)
• 1st solution of the homogeneous ODE

y1(x) = e−2x

• 2nd solution of the homogeneous ODE
y2(x) = ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−2x + c2ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2 cosh (2x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−2x ex

−2 e−2x ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = 3 e−x

◦ Substitute functions into equation for yp(x)

yp(x) = −2
(
−e3x

(∫
e−x cosh(2x)dx

)
+
∫
cosh(2x)e2xdx

)
e−2x

3

◦ Compute integrals

yp(x) = −
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 −2 cosh(x)− 2 sinh(x)

3

)
e3x+2 cosh(x)4+2 cosh(x)3 sinh(x)−2 cosh(x)2−cosh(x) sinh(x)+x+ 1

2

)
3

• Substitute particular solution into general solution to ODE

y = c1e−2x + c2ex −
e−2x

((
4 cosh(x)3

3 − 4 sinh(x) cosh(x)2
3 −2 cosh(x)− 2 sinh(x)

3

)
e3x+2 cosh(x)4+2 cosh(x)3 sinh(x)−2 cosh(x)2−cosh(x) sinh(x)+x+ 1

2

)
3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 31� �
dsolve(diff(y(x),x$2)+diff(y(x),x)-2*y(x)=2*cosh(2*x),y(x), singsol=all)� �

y(x) = (9 e4x + 36 e3xc2 + 36c1 − 12x− 7) e−2x

36

3 Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 39� �
DSolve[y''[x]+y'[x]-2*y[x]==2*Cosh[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
36e

−2x(−12x+ 9e4x + 36c2e3x − 4 + 36c1
)
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4.6 problem 6
4.6.1 Solving as second order linear constant coeff ode . . . . . . . . 784
4.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 788
4.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 793

Internal problem ID [5149]
Internal file name [OUTPUT/4642_Sunday_June_05_2022_03_02_32_PM_21488523/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 6.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′ + 10y = 20− e2x

4.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −1, C = 10, f(x) = 20− e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y′ + 10y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −1, C = 10. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − λ eλx + 10 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − λ+ 10 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −1, C = 10 into the above gives

λ1,2 =
1

(2) (1) ±
1

(2) (1)
√
−12 − (4) (1) (10)

= 1
2 ± i

√
39
2

Hence

λ1 =
1
2 + i

√
39
2

λ2 =
1
2 − i

√
39
2

Which simplifies to

λ1 =
1
2 + i

√
39
2

λ2 =
1
2 − i

√
39
2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1
2 and β =

√
39
2 . Therefore the final solution, when using Euler relation, can

be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = e
x
2

(
c1 cos

(√
39x
2

)
+ c2 sin

(√
39x
2

))
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Therefore the homogeneous solution yh is

yh = ex
2

(
c1 cos

(√
39x
2

)
+ c2 sin

(√
39x
2

))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

20− e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}, {e2x}]
While the set of the basis functions for the homogeneous solution found earlier is{

ex
2 cos

(√
39x
2

)
, ex

2 sin
(√

39x
2

)}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 + A2e2x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

12A2e2x + 10A1 = 20− e2x

Solving for the unknowns by comparing coefficients results in[
A1 = 2, A2 = − 1

12

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2− e2x
12

Therefore the general solution is

y = yh + yp

=
(
ex

2

(
c1 cos

(√
39x
2

)
+ c2 sin

(√
39x
2

)))
+
(
2− e2x

12

)
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Summary
The solution(s) found are the following

(1)y = ex
2

(
c1 cos

(√
39x
2

)
+ c2 sin

(√
39x
2

))
+ 2− e2x

12

Figure 169: Slope field plot

Verification of solutions

y = ex
2

(
c1 cos

(√
39x
2

)
+ c2 sin

(√
39x
2

))
+ 2− e2x

12

Verified OK.
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4.6.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − y′ + 10y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −1 (3)
C = 10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −39
4 (6)

Comparing the above to (5) shows that

s = −39
t = 4

Therefore eq. (4) becomes

z′′(x) = −39z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 119: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −39
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(√

39x
2

)

Using the above, the solution for the original ode can now be found. The first solution
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to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
1 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to

y1 = ex
2 cos

(√
39x
2

)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

1 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

2
√
39 tan

(√
39x
2

)
39


Therefore the solution is

y = c1y1 + c2y2

= c1

(
ex

2 cos
(√

39x
2

))
+ c2

ex
2 cos

(√
39x
2

)2
√
39 tan

(√
39x
2

)
39



This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y′ + 10y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = ex
2 cos

(√
39x
2

)
c1 +

2c2e
x
2
√
39 sin

(√
39x
2

)
39

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

20− e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}, {e2x}]

While the set of the basis functions for the homogeneous solution found earlier isex
2 cos

(√
39x
2

)
,
2 ex

2
√
39 sin

(√
39x
2

)
39


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 + A2e2x

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

12A2e2x + 10A1 = 20− e2x

Solving for the unknowns by comparing coefficients results in[
A1 = 2, A2 = − 1

12

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2− e2x
12

Therefore the general solution is

y = yh + yp

=

ex
2 cos

(√
39x
2

)
c1 +

2c2e
x
2
√
39 sin

(√
39x
2

)
39

+
(
2− e2x

12

)

Summary
The solution(s) found are the following

(1)y = ex
2 cos

(√
39x
2

)
c1 +

2c2e
x
2
√
39 sin

(√
39x
2

)
39 + 2− e2x

12

Figure 170: Slope field plot
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Verification of solutions

y = ex
2 cos

(√
39x
2

)
c1 +

2c2e
x
2
√
39 sin

(√
39x
2

)
39 + 2− e2x

12

Verified OK.

4.6.3 Maple step by step solution

Let’s solve
y′′ − y′ + 10y = 20− e2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − r + 10 = 0

• Use quadratic formula to solve for r

r = 1±
(√

−39
)

2

• Roots of the characteristic polynomial

r =
(

1
2 −

I
√
39
2 , 12 +

I
√
39
2

)
• 1st solution of the homogeneous ODE

y1(x) = ex
2 cos

(√
39x
2

)
• 2nd solution of the homogeneous ODE

y2(x) = ex
2 sin

(√
39x
2

)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = ex
2 cos

(√
39x
2

)
c1 + ex

2 sin
(√

39x
2

)
c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 20− e2x

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 ex
2 cos

(√
39x
2

)
ex

2 sin
(√

39x
2

)
e
x
2 cos

(√
39 x
2

)
2 −

e
x
2
√
39 sin

(√
39 x
2

)
2

e
x
2 sin

(√
39 x
2

)
2 +

e
x
2
√
39 cos

(√
39 x
2

)
2


◦ Compute Wronskian

W (y1(x) , y2(x)) =
√
39 ex
2

◦ Substitute functions into equation for yp(x)

yp(x) =
2 e

x
2
√
39
(
cos
(√

39 x
2

)(∫
sin
(√

39 x
2

)(
−20 e−

x
2 +e

3x
2
)
dx
)
−sin

(√
39 x
2

)(∫
cos
(√

39 x
2

)(
−20 e−

x
2 +e

3x
2
)
dx
))

39

◦ Compute integrals
yp(x) = 2− e2x

12

• Substitute particular solution into general solution to ODE

y = ex
2 cos

(√
39x
2

)
c1 + ex

2 sin
(√

39x
2

)
c2 − e2x

12 + 2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$2)-diff(y(x),x)+10*y(x)=20-exp(2*x),y(x), singsol=all)� �

y(x) = ex
2 sin

(√
39x
2

)
c2 + ex

2 cos
(√

39x
2

)
c1 + 2− e2x

12
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3 Solution by Mathematica
Time used: 1.291 (sec). Leaf size: 58� �
DSolve[y''[x]-y'[x]+10*y[x]==20-Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e2x

12 + c2e
x/2 cos

(√
39x
2

)
+ c1e

x/2 sin
(√

39x
2

)
+ 2
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4.7 problem 7
4.7.1 Solving as second order linear constant coeff ode . . . . . . . . 796
4.7.2 Solving as linear second order ode solved by an integrating factor

ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
4.7.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 801
4.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 806

Internal problem ID [5150]
Internal file name [OUTPUT/4643_Sunday_June_05_2022_03_02_33_PM_22831220/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y′ + 4y = 2 cos (x)2

4.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 4, C = 4, f(x) = 2 cos (x)2. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y′ + 4y = 0

796



This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 4, C = 4. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4λ eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4λ+ 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 4 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)

√
(4)2 − (4) (1) (4)

= −2

Hence this is the case of a double root λ1,2 = 2. Therefore the solution is

y = c1e−2x + c2x e−2x (1)

Therefore the homogeneous solution yh is

yh = c1e−2x + c2x e−2x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 cos (x)2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}, {cos (2x) , sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−2x, e−2x}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 + A2 cos (2x) + A3 sin (2x)

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−8A2 sin (2x) + 8A3 cos (2x) + 4A1 = 2 cos (x)2

Solving for the unknowns by comparing coefficients results in[
A1 =

1
4 , A2 = 0, A3 =

1
8

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
4 + sin (2x)

8

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2x e−2x)+ (1

4 + sin (2x)
8

)

Which simplifies to

y = e−2x(c2x+ c1) +
1
4 + sin (2x)

8

Summary
The solution(s) found are the following

(1)y = e−2x(c2x+ c1) +
1
4 + sin (2x)

8
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Figure 171: Slope field plot

Verification of solutions

y = e−2x(c2x+ c1) +
1
4 + sin (2x)

8

Verified OK.

4.7.2 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = 4. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
4 dx

= e2x
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Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 2 e2x cos (x)2(
e2xy

) ′′ = 2 e2x cos (x)2

Integrating once gives

(
e2xy

)′ = (2 + cos (2x) + sin (2x)) e2x
4 + c1

Integrating again gives

(
e2xy

)
= (2 + sin (2x)) e2x

8 + c1x+ c2

Hence the solution is

y =
(2+sin(2x))e2x

8 + c1x+ c2
e2x

Or

y = cos (x) sin (x)
4 + c1x e−2x + c2e−2x + 1

4

Summary
The solution(s) found are the following

(1)y = cos (x) sin (x)
4 + c1x e−2x + c2e−2x + 1

4
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Figure 172: Slope field plot

Verification of solutions

y = cos (x) sin (x)
4 + c1x e−2x + c2e−2x + 1

4

Verified OK.

4.7.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 121: Necessary conditions for each Kovacic case

802



The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
4
1 dx

= z1e
−2x

= z1
(
e−2x)

Which simplifies to
y1 = e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 4

1 dx

(y1)2
dx

= y1

∫
e−4x

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x)+ c2

(
e−2x(x)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y′ + 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−2x + c2x e−2x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 cos (x)2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1}, {cos (2x) , sin (2x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{x e−2x, e−2x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 + A2 cos (2x) + A3 sin (2x)

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−8A2 sin (2x) + 8A3 cos (2x) + 4A1 = 2 cos (x)2

804



Solving for the unknowns by comparing coefficients results in[
A1 =

1
4 , A2 = 0, A3 =

1
8

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
4 + sin (2x)

8

Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2x e−2x)+ (1

4 + sin (2x)
8

)

Which simplifies to

y = e−2x(c2x+ c1) +
1
4 + sin (2x)

8

Summary
The solution(s) found are the following

(1)y = e−2x(c2x+ c1) +
1
4 + sin (2x)

8
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Figure 173: Slope field plot

Verification of solutions

y = e−2x(c2x+ c1) +
1
4 + sin (2x)

8

Verified OK.

4.7.4 Maple step by step solution

Let’s solve
y′′ + 4y′ + 4y = 2 cos (x)2

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 4 = 0

• Factor the characteristic polynomial
(r + 2)2 = 0

• Root of the characteristic polynomial
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r = −2
• 1st solution of the homogeneous ODE

y1(x) = e−2x

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = x e−2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−2x + c2x e−2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2 cos (x)2

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−2x x e−2x

−2 e−2x e−2x − 2x e−2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−4x

◦ Substitute functions into equation for yp(x)
yp(x) = 2 e−2x(−(∫ x cos (x)2 e2xdx

)
+ x
(∫

e2x cos (x)2 dx
))

◦ Compute integrals
yp(x) = 1

4 +
sin(2x)

8

• Substitute particular solution into general solution to ODE
y = c2x e−2x + c1e−2x + sin(2x)

8 + 1
4
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 22� �
dsolve(diff(y(x),x$2)+4*diff(y(x),x)+4*y(x)=2*cos(x)^2,y(x), singsol=all)� �

y(x) = 1
4 + (c1x+ c2) e−2x + sin (2x)

8

3 Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 29� �
DSolve[y''[x]+4*y'[x]+4*y[x]==2*Cos[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8
(
sin(2x) + 8e−2x(c2x+ c1) + 2

)
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4.8 problem 8
4.8.1 Solving as second order linear constant coeff ode . . . . . . . . 809
4.8.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 812
4.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 817

Internal problem ID [5151]
Internal file name [OUTPUT/4644_Sunday_June_05_2022_03_02_35_PM_94342933/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 4y′ + 3y = x+ e2x

4.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −4, C = 3, f(x) = x+ e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 3y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −4, C = 3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 4λ eλx + 3 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 4λ+ 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −4, C = 3 into the above gives

λ1,2 =
4

(2) (1) ±
1

(2) (1)
√
−42 − (4) (1) (3)

= 2± 1

Hence
λ1 = 2 + 1
λ2 = 2− 1

Which simplifies to
λ1 = 3
λ2 = 1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(1)x

Or
y = e3xc1 + c2ex

Therefore the homogeneous solution yh is

yh = e3xc1 + c2ex
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x+ e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}, {1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{ex, e3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x + A2 + A3x

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1e2x − 4A3 + 3A2 + 3A3x = x+ e2x

Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 =

4
9 , A3 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −e2x + 4
9 + x

3

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2ex

)
+
(
−e2x + 4

9 + x

3

)
Summary
The solution(s) found are the following

(1)y = e3xc1 + c2ex − e2x + 4
9 + x

3
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Figure 174: Slope field plot

Verification of solutions

y = e3xc1 + c2ex − e2x + 4
9 + x

3

Verified OK.

4.8.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 4y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −4 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 123: Necessary conditions for each Kovacic case

813



The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4
1 dx

= z1e
2x

= z1
(
e2x
)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4

1 dx

(y1)2
dx

= y1

∫
e4x

(y1)2
dx

= y1

(
e2x
2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2

(
ex
(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 4y′ + 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex +
c2e3x
2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x+ e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}, {1, x}]

While the set of the basis functions for the homogeneous solution found earlier is{
e3x
2 , ex

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x + A2 + A3x
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The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1e2x − 4A3 + 3A2 + 3A3x = x+ e2x

Solving for the unknowns by comparing coefficients results in[
A1 = −1, A2 =

4
9 , A3 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −e2x + 4
9 + x

3

Therefore the general solution is

y = yh + yp

=
(
c1ex +

c2e3x
2

)
+
(
−e2x + 4

9 + x

3

)

Summary
The solution(s) found are the following

(1)y = c1ex +
c2e3x
2 − e2x + 4

9 + x

3
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Figure 175: Slope field plot

Verification of solutions

y = c1ex +
c2e3x
2 − e2x + 4

9 + x

3

Verified OK.

4.8.3 Maple step by step solution

Let’s solve
y′′ − 4y′ + 3y = x+ e2x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 4r + 3 = 0

• Factor the characteristic polynomial
(r − 1) (r − 3) = 0

• Roots of the characteristic polynomial
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r = (1, 3)
• 1st solution of the homogeneous ODE

y1(x) = ex

• 2nd solution of the homogeneous ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x+ e2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex e3x

ex 3 e3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2 e4x

◦ Substitute functions into equation for yp(x)

yp(x) = − ex
(∫ (

x e−x+ex
)
dx
)

2 + e3x
(∫ (

x+e2x
)
e−3xdx

)
2

◦ Compute integrals
yp(x) = −e2x + 4

9 +
x
3

• Substitute particular solution into general solution to ODE
y = c1ex + c2e3x − e2x + 4

9 +
x
3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+3*y(x)=x+exp(2*x),y(x), singsol=all)� �

y(x) = exc2 + e3xc1 − e2x + x

3 + 4
9

3 Solution by Mathematica
Time used: 0.129 (sec). Leaf size: 35� �
DSolve[y''[x]-4*y'[x]+3*y[x]==x+Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

3 − e2x + c1e
x + c2e

3x + 4
9
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4.9 problem 9
4.9.1 Solving as second order linear constant coeff ode . . . . . . . . 820
4.9.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 823
4.9.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 828

Internal problem ID [5152]
Internal file name [OUTPUT/4645_Sunday_June_05_2022_03_02_35_PM_57848089/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 9.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2y′ + 3y = x2 − 1

4.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 3, f(x) = x2 − 1. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 3y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −2, C = 3. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + 3 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 3 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 3 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (3)

= 1± i
√
2

Hence

λ1 = 1 + i
√
2

λ2 = 1− i
√
2

Which simplifies to

λ1 = 1 + i
√
2

λ2 = −i
√
2 + 1

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β =
√
2. Therefore the final solution, when using Euler relation, can

be written as
y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes

y = ex
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

Therefore the homogeneous solution yh is

yh = ex
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]
While the set of the basis functions for the homogeneous solution found earlier is{

ex cos
(
x
√
2
)
, ex sin

(
x
√
2
)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A3x
2 + 3A2x− 4xA3 + 3A1 − 2A2 + 2A3 = x2 − 1

Solving for the unknowns by comparing coefficients results in[
A1 = − 7

27 , A2 =
4
9 , A3 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
3x

2 + 4
9x− 7

27

Therefore the general solution is

y = yh + yp

=
(
ex
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
)))

+
(
1
3x

2 + 4
9x− 7

27

)
Summary
The solution(s) found are the following

(1)y = ex
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

+ x2

3 + 4x
9 − 7

27
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Figure 176: Slope field plot

Verification of solutions

y = ex
(
c1 cos

(
x
√
2
)
+ c2 sin

(
x
√
2
))

+ x2

3 + 4x
9 − 7

27

Verified OK.

4.9.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + 3y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −2
1 (6)

Comparing the above to (5) shows that

s = −2
t = 1

Therefore eq. (4) becomes

z′′(x) = −2z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 125: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −2 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos
(
x
√
2
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx

= z1e
x

= z1(ex)

Which simplifies to

y1 = ex cos
(
x
√
2
)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1

(√
2 tan

(
x
√
2
)

2

)

825



Therefore the solution is

y = c1y1 + c2y2

= c1
(
ex cos

(
x
√
2
))

+ c2

(
ex cos

(
x
√
2
)(√

2 tan
(
x
√
2
)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 3y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = cos
(
x
√
2
)
exc1 +

c2ex
√
2 sin

(
x
√
2
)

2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x2 + 1

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is{
ex cos

(
x
√
2
)
,
ex
√
2 sin

(
x
√
2
)

2

}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A3x
2 + A2x+ A1

826



The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A3x
2 + 3A2x− 4xA3 + 3A1 − 2A2 + 2A3 = x2 − 1

Solving for the unknowns by comparing coefficients results in[
A1 = − 7

27 , A2 =
4
9 , A3 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
1
3x

2 + 4
9x− 7

27

Therefore the general solution is

y = yh + yp

=
(
cos
(
x
√
2
)
exc1 +

c2ex
√
2 sin

(
x
√
2
)

2

)
+
(
1
3x

2 + 4
9x− 7

27

)

Summary
The solution(s) found are the following

(1)y = cos
(
x
√
2
)
exc1 +

c2ex
√
2 sin

(
x
√
2
)

2 + x2

3 + 4x
9 − 7

27
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Figure 177: Slope field plot

Verification of solutions

y = cos
(
x
√
2
)
exc1 +

c2ex
√
2 sin

(
x
√
2
)

2 + x2

3 + 4x
9 − 7

27

Verified OK.

4.9.3 Maple step by step solution

Let’s solve
y′′ − 2y′ + 3y = x2 − 1

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 3 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−8
)

2

• Roots of the characteristic polynomial
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r =
(
1 + I

√
2,−I

√
2 + 1

)
• 1st solution of the homogeneous ODE

y1(x) = ex cos
(
x
√
2
)

• 2nd solution of the homogeneous ODE
y2(x) = ex sin

(
x
√
2
)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = cos

(
x
√
2
)
exc1 + sin

(
x
√
2
)
exc2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = x2 − 1

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 ex cos
(
x
√
2
)

ex sin
(
x
√
2
)

ex cos
(
x
√
2
)
− ex

√
2 sin

(
x
√
2
)

ex sin
(
x
√
2
)
+ ex

√
2 cos

(
x
√
2
)


◦ Compute Wronskian
W (y1(x) , y2(x)) =

√
2 e2x

◦ Substitute functions into equation for yp(x)

yp(x) = −
ex

√
2
(
cos
(
x
√
2
)(∫

e−x
(
x2−1

)
sin
(
x
√
2
)
dx
)
−sin

(
x
√
2
)(∫

e−x
(
x2−1

)
cos
(
x
√
2
)
dx
))

2

◦ Compute integrals
yp(x) = 1

3x
2 + 4

9x− 7
27

• Substitute particular solution into general solution to ODE
y = cos

(
x
√
2
)
exc1 + sin

(
x
√
2
)
exc2 + x2

3 + 4x
9 − 7

27
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+3*y(x)=x^2-1,y(x), singsol=all)� �

y(x) = ex sin
(√

2x
)
c2 + ex cos

(√
2x
)
c1 +

x2

3 + 4x
9 − 7

27

3 Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 48� �
DSolve[y''[x]-2*y'[x]+3*y[x]==x^2-1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
27
(
9x2 + 12x− 7

)
+ c2e

x cos
(√

2x
)
+ c1e

x sin
(√

2x
)
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4.10 problem 10
4.10.1 Solving as second order linear constant coeff ode . . . . . . . . 831
4.10.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 834
4.10.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 841

Internal problem ID [5153]
Internal file name [OUTPUT/4646_Sunday_June_05_2022_03_02_37_PM_51493109/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 9y = e3x + sin (x)

4.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = −9, f(x) = e3x + sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 9y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = −9. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 9 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 9 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −9 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−9)

= ±3

Hence
λ1 = +3
λ2 = −3

Which simplifies to
λ1 = 3
λ2 = −3

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(3)x + c2e

(−3)x

Or
y = e3xc1 + c2e−3x

Therefore the homogeneous solution yh is

yh = e3xc1 + c2e−3x
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e3x + sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e3x}, {cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−3x, e3x}

Since e3x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e3xx}, {cos (x) , sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e3xx+ A2 cos (x) + A3 sin (x)

The unknowns {A1, A2, A3} are found by substituting the above trial solution yp into
the ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

6A1e3x − 10A2 cos (x)− 10A3 sin (x) = e3x + sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
6 , A2 = 0, A3 = − 1

10

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
e3xx
6 − sin (x)

10

Therefore the general solution is

y = yh + yp

=
(
e3xc1 + c2e−3x)+ (e3xx

6 − sin (x)
10

)
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Summary
The solution(s) found are the following

(1)y = e3xc1 + c2e−3x + e3xx
6 − sin (x)

10

Figure 178: Slope field plot

Verification of solutions

y = e3xc1 + c2e−3x + e3xx
6 − sin (x)

10

Verified OK.

4.10.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 9y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
1 (6)

Comparing the above to (5) shows that

s = 9
t = 1

Therefore eq. (4) becomes

z′′(x) = 9z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

835



Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 127: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 9 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−3x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= e−3x
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Which simplifies to
y1 = e−3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e−3x
∫ 1

e−6x dx

= e−3x
(
e6x
6

)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−3x)+ c2

(
e−3x

(
e6x
6

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 9y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−3x + c2e3x
6

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
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parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−3x

y2 =
e3x
6

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−3x e3x

6

d
dx
(e−3x) d

dx

(
e3x
6

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e−3x e3x
6

−3 e−3x e3x
2

∣∣∣∣∣∣
Therefore

W =
(
e−3x)(e3x

2

)
−
(
e3x
6

)(
−3 e−3x)

Which simplifies to
W = e−3xe3x
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Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ e3x

(
e3x+sin(x)

)
6
1 dx

Which simplifies to

u1 = −
∫ e3x(e3x + sin (x))

6 dx

Hence

u1 = −e6x
36 + e3x cos (x)

60 − e3x sin (x)
20

And Eq. (3) becomes

u2 =
∫ e−3x(e3x + sin (x))

1 dx

Which simplifies to

u2 =
∫ (

1 + sin (x) e−3x) dx
Hence

u2 = x− cos (x) e−3x

10 − 3 sin (x) e−3x

10

Which simplifies to

u1 =
(−3 sin (x) + cos (x)) e3x

60 − e6x
36

u2 =
(− cos (x)− 3 sin (x)) e−3x

10 + x

Therefore the particular solution, from equation (1) is

yp(x) =
(
(−3 sin (x) + cos (x)) e3x

60 − e6x
36

)
e−3x +

(
(− cos(x)−3 sin(x))e−3x

10 + x
)
e3x

6
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Which simplifies to

yp(x) =
(−1 + 6x) e3x

36 − sin (x)
10

Therefore the general solution is

y = yh + yp

=
(
c1e−3x + c2e3x

6

)
+
(
(−1 + 6x) e3x

36 − sin (x)
10

)
Summary
The solution(s) found are the following

(1)y = c1e−3x + c2e3x
6 + (−1 + 6x) e3x

36 − sin (x)
10

Figure 179: Slope field plot

Verification of solutions

y = c1e−3x + c2e3x
6 + (−1 + 6x) e3x

36 − sin (x)
10

Verified OK.
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4.10.3 Maple step by step solution

Let’s solve
y′′ − 9y = e3x + sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 9 = 0

• Factor the characteristic polynomial
(r − 3) (r + 3) = 0

• Roots of the characteristic polynomial
r = (−3, 3)

• 1st solution of the homogeneous ODE
y1(x) = e−3x

• 2nd solution of the homogeneous ODE
y2(x) = e3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−3x + c2e3x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = e3x + sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−3x e3x

−3 e−3x 3 e3x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 6
◦ Substitute functions into equation for yp(x)
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yp(x) = − e−3x(∫ e3x
(
e3x+sin(x)

)
dx
)

6 + e3x
(∫ (

1+sin(x)e−3x)dx)
6

◦ Compute integrals

yp(x) = (−1+6x)e3x
36 − sin(x)

10

• Substitute particular solution into general solution to ODE

y = c1e−3x + c2e3x + (−1+6x)e3x
36 − sin(x)

10

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$2)-9*y(x)=exp(3*x)+sin(x),y(x), singsol=all)� �

y(x) = (−1 + 6x+ 36c2) e3x
36 + e−3xc1 −

sin (x)
10

3 Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 37� �
DSolve[y''[x]-9*y[x]==Exp[3*x]+Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −sin(x)
10 + e3x

(
x

6 − 1
36 + c1

)
+ c2e

−3x
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4.11 problem 12
4.11.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 843
4.11.2 Solving as second order linear constant coeff ode . . . . . . . . 844
4.11.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 848
4.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 854

Internal problem ID [5154]
Internal file name [OUTPUT/4647_Sunday_June_05_2022_03_02_38_PM_24001607/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x′′ + 4x′ + 3x = e−3t

With initial conditions [
x(0) = 1

2 , x
′(0) = −2

]

4.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 4
q(t) = 3
F = e−3t
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Hence the ode is

x′′ + 4x′ + 3x = e−3t

The domain of p(t) = 4 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 3 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = e−3t is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

4.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 4, C = 3, f(t) = e−3t. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 4x′ + 3x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 4, C = 3. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2eλt + 4λ eλt + 3 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 4λ+ 3 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 3 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)
√

42 − (4) (1) (3)

= −2± 1

Hence
λ1 = −2 + 1
λ2 = −2− 1

Which simplifies to
λ1 = −1
λ2 = −3

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(−1)t + c2e

(−3)t

Or
x = e−tc1 + c2e−3t

Therefore the homogeneous solution xh is

xh = e−tc1 + c2e−3t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−3t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−3t}]
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While the set of the basis functions for the homogeneous solution found earlier is

{e−3t, e−t}

Since e−3t is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{t e−3t}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

xp = A1t e−3t

The unknowns {A1} are found by substituting the above trial solution xp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−2A1e−3t = e−3t

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp = −t e−3t

2

Therefore the general solution is

x = xh + xp

=
(
e−tc1 + c2e−3t)+ (−t e−3t

2

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = e−tc1 + c2e−3t − t e−3t

2 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

2 and t = 0
in the above gives

1
2 = c1 + c2 (1A)

Taking derivative of the solution gives

x′ = −e−tc1 − 3c2e−3t − e−3t

2 + 3t e−3t

2

substituting x′ = −2 and t = 0 in the above gives

−2 = −c1 − 3c2 −
1
2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0

c2 =
1
2

Substituting these values back in above solution results in

x = e−3t

2 − t e−3t

2

Which simplifies to

x = −e−3t(t− 1)
2

Summary
The solution(s) found are the following

(1)x = −e−3t(t− 1)
2
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(a) Solution plot (b) Slope field plot

Verification of solutions

x = −e−3t(t− 1)
2

Verified OK.

4.11.3 Solving using Kovacic algorithm

Writing the ode as

x′′ + 4x′ + 3x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4 (3)
C = 3

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(t) = z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 129: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of t, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
4
1 dt

= z1e
−2t

= z1
(
e−2t)

Which simplifies to
x1 = e−3t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 4

1 dt

(x1)2
dt

= x1

∫
e−4t

(x1)2
dt

= x1

(
e2t
2

)

850



Therefore the solution is

x = c1x1 + c2x2

= c1
(
e−3t)+ c2

(
e−3t

(
e2t
2

))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 4x′ + 3x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1e−3t + c2e−t

2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e−3t

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e−3t}]

While the set of the basis functions for the homogeneous solution found earlier is{
e−t

2 , e−3t
}

Since e−3t is duplicated in the UC_set, then this basis is multiplied by extra t. The
UC_set becomes

[{t e−3t}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

xp = A1t e−3t
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The unknowns {A1} are found by substituting the above trial solution xp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

−2A1e−3t = e−3t

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp = −t e−3t

2

Therefore the general solution is

x = xh + xp

=
(
c1e−3t + c2e−t

2

)
+
(
−t e−3t

2

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e−3t + c2e−t

2 − t e−3t

2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

2 and t = 0
in the above gives

1
2 = c1 +

c2
2 (1A)

Taking derivative of the solution gives

x′ = −3c1e−3t − c2e−t

2 − e−3t

2 + 3t e−3t

2

substituting x′ = −2 and t = 0 in the above gives

−2 = −3c1 −
c2
2 − 1

2 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
2

c2 = 0

Substituting these values back in above solution results in

x = e−3t

2 − t e−3t

2

Which simplifies to

x = −e−3t(t− 1)
2

Summary
The solution(s) found are the following

(1)x = −e−3t(t− 1)
2

(a) Solution plot (b) Slope field plot

Verification of solutions

x = −e−3t(t− 1)
2

Verified OK.
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4.11.4 Maple step by step solution

Let’s solve[
x′′ + 4x′ + 3x = e−3t, x(0) = 1

2 , x
′∣∣∣{t=0}

= −2
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 3 = 0

• Factor the characteristic polynomial
(r + 3) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−3,−1)

• 1st solution of the homogeneous ODE
x1(t) = e−3t

• 2nd solution of the homogeneous ODE
x2(t) = e−t

• General solution of the ODE
x = c1x1(t) + c2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = c1e−3t + c2e−t + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = e−3t

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 e−3t e−t

−3 e−3t −e−t


◦ Compute Wronskian

W (x1(t) , x2(t)) = 2 e−4t

◦ Substitute functions into equation for xp(t)
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xp(t) = − e−3t(∫ 1dt
)

2 + e−t
(∫

e−2tdt
)

2

◦ Compute integrals

xp(t) = − e−3t(2t+1)
4

• Substitute particular solution into general solution to ODE

x = c1e−3t + c2e−t − e−3t(2t+1)
4

� Check validity of solution x = c1e−3t + c2e−t − e−3t(2t+1)
4

◦ Use initial condition x(0) = 1
2

1
2 = c1 + c2 − 1

4

◦ Compute derivative of the solution

x′ = −3c1e−3t − c2e−t + 3 e−3t(2t+1)
4 − e−3t

2

◦ Use the initial condition x′∣∣∣{t=0}
= −2

−2 = −3c1 − c2 + 1
4

◦ Solve for c1 and c2{
c1 = 3

4 , c2 = 0
}

◦ Substitute constant values into general solution and simplify

x = − e−3t(t−1)
2

• Solution to the IVP

x = − e−3t(t−1)
2

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve([diff(x(t),t$2)+4*diff(x(t),t)+3*x(t)=exp(-3*t),x(0) = 1/2, D(x)(0) = -2],x(t), singsol=all)� �

x(t) = −e−3t(t− 1)
2

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 17� �
DSolve[{x''[t]+4*x'[t]+3*x[t]==Exp[-3*t],{x[0]==1/2,x'[0]==-2}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) → −1
2e

−3t(t− 1)
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4.12 problem 13
4.12.1 Solving as second order linear constant coeff ode . . . . . . . . 857
4.12.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 860
4.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 865

Internal problem ID [5155]
Internal file name [OUTPUT/4648_Sunday_June_05_2022_03_02_39_PM_45092347/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y′ + 5y = 6 sin (t)

4.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(t) +By′(t) + Cy(t) = f(t)

Where A = 1, B = 4, C = 5, f(t) = 6 sin (t). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(t)+By′(t)+Cy(t) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(t) +By′(t) + Cy(t) = f(t).
yh is the solution to

y′′ + 4y′ + 5y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(t) +By′(t) + Cy(t) = 0
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Where in the above A = 1, B = 4, C = 5. Let the solution be y = eλt. Substituting this
into the ODE gives

λ2eλt + 4λ eλt + 5 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 4λ+ 5 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 4, C = 5 into the above gives

λ1,2 =
−4

(2) (1) ±
1

(2) (1)
√

42 − (4) (1) (5)

= −2± i

Hence

λ1 = −2 + i

λ2 = −2− i

Which simplifies to
λ1 = −2 + i

λ2 = −2− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −2 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
y = e−2t(c1 cos (t) + c2 sin (t))

Therefore the homogeneous solution yh is

yh = e−2t(c1 cos (t) + c2 sin (t))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

6 sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]
While the set of the basis functions for the homogeneous solution found earlier is

{e−2t cos (t) , e−2t sin (t)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A1 cos (t) + 4A2 sin (t)− 4A1 sin (t) + 4A2 cos (t) = 6 sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 = −3

4 , A2 =
3
4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −3 cos (t)
4 + 3 sin (t)

4

Therefore the general solution is

y = yh + yp

=
(
e−2t(c1 cos (t) + c2 sin (t))

)
+
(
−3 cos (t)

4 + 3 sin (t)
4

)
Summary
The solution(s) found are the following

(1)y = e−2t(c1 cos (t) + c2 sin (t))−
3 cos (t)

4 + 3 sin (t)
4
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Figure 182: Slope field plot

Verification of solutions

y = e−2t(c1 cos (t) + c2 sin (t))−
3 cos (t)

4 + 3 sin (t)
4

Verified OK.

4.12.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y′ + 5y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 4 (3)
C = 5

Applying the Liouville transformation on the dependent variable gives

z(t) = ye
∫

B
2A dt
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Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then y is found using the inverse trans-
formation

y = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 131: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
4
1 dt

= z1e
−2t

= z1
(
e−2t)

Which simplifies to
y1 = e−2t cos (t)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dt

y21
dt

Substituting gives

y2 = y1

∫
e
∫
− 4

1 dt

(y1)2
dt

= y1

∫
e−4t

(y1)2
dt

= y1(tan (t))
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2t cos (t)

)
+ c2

(
e−2t cos (t) (tan (t))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(t)+By′(t)+Cy(t) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(t) + By′(t) + Cy(t) = f(t).
yh is the solution to

y′′ + 4y′ + 5y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = cos (t) e−2tc1 + sin (t) e−2tc2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

6 sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2t cos (t) , e−2t sin (t)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

4A1 cos (t) + 4A2 sin (t)− 4A1 sin (t) + 4A2 cos (t) = 6 sin (t)
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Solving for the unknowns by comparing coefficients results in[
A1 = −3

4 , A2 =
3
4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −3 cos (t)
4 + 3 sin (t)

4

Therefore the general solution is

y = yh + yp

=
(
cos (t) e−2tc1 + sin (t) e−2tc2

)
+
(
−3 cos (t)

4 + 3 sin (t)
4

)

Which simplifies to

y = e−2t(c1 cos (t) + c2 sin (t))−
3 cos (t)

4 + 3 sin (t)
4

Summary
The solution(s) found are the following

(1)y = e−2t(c1 cos (t) + c2 sin (t))−
3 cos (t)

4 + 3 sin (t)
4
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Figure 183: Slope field plot

Verification of solutions

y = e−2t(c1 cos (t) + c2 sin (t))−
3 cos (t)

4 + 3 sin (t)
4

Verified OK.

4.12.3 Maple step by step solution

Let’s solve
y′′ + 4y′ + 5y = 6 sin (t)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4r + 5 = 0

• Use quadratic formula to solve for r

r = (−4)±
(√

−4
)

2

• Roots of the characteristic polynomial
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r = (−2− I,−2 + I)
• 1st solution of the homogeneous ODE

y1(t) = e−2t cos (t)
• 2nd solution of the homogeneous ODE

y2(t) = e−2t sin (t)
• General solution of the ODE

y = c1y1(t) + c2y2(t) + yp(t)
• Substitute in solutions of the homogeneous ODE

y = cos (t) e−2tc1 + sin (t) e−2tc2 + yp(t)
� Find a particular solution yp(t) of the ODE

◦ Use variation of parameters to find yp here f(t) is the forcing function[
yp(t) = −y1(t)

(∫ y2(t)f(t)
W (y1(t),y2(t))dt

)
+ y2(t)

(∫ y1(t)f(t)
W (y1(t),y2(t))dt

)
, f(t) = 6 sin (t)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(t) , y2(t)) =

 e−2t cos (t) e−2t sin (t)
−2 e−2t cos (t)− e−2t sin (t) −2 e−2t sin (t) + e−2t cos (t)


◦ Compute Wronskian

W (y1(t) , y2(t)) = e−4t

◦ Substitute functions into equation for yp(t)
yp(t) = 3 e−2t(−2 cos (t)

(∫
sin (t)2 e2tdt

)
+ sin (t)

(∫
sin (2t) e2tdt

))
◦ Compute integrals

yp(t) = −3 cos(t)
4 + 3 sin(t)

4

• Substitute particular solution into general solution to ODE
y = sin (t) e−2tc2 + cos (t) e−2tc1 + 3 sin(t)

4 − 3 cos(t)
4
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(t),t$2)+4*diff(y(t),t)+5*y(t)=6*sin(t),y(t), singsol=all)� �

y(t) = e−2t sin (t) c2 + e−2t cos (t) c1 −
3 cos (t)

4 + 3 sin (t)
4

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 36� �
DSolve[y''[t]+4*y'[t]+5*y[t]==6*Sin[t],y[t],t,IncludeSingularSolutions -> True]� �

y(t) →
(
−3
4 + c2e

−2t
)
cos(t) +

(
3
4 + c1e

−2t
)
sin(t)
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4.13 problem 14
4.13.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 868
4.13.2 Solving as second order linear constant coeff ode . . . . . . . . 869
4.13.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 873
4.13.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 878

Internal problem ID [5156]
Internal file name [OUTPUT/4649_Sunday_June_05_2022_03_02_40_PM_6305597/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x′′ − 3x′ + 2x = sin (t)

With initial conditions

[x(0) = 0, x′(0) = 0]

4.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = −3
q(t) = 2
F = sin (t)
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Hence the ode is

x′′ − 3x′ + 2x = sin (t)

The domain of p(t) = −3 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = sin (t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

4.13.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = −3, C = 2, f(t) = sin (t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − 3x′ + 2x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = −3, C = 2. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2eλt − 3λ eλt + 2 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − 3λ+ 2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −3, C = 2 into the above gives

λ1,2 =
3

(2) (1) ±
1

(2) (1)
√
−32 − (4) (1) (2)

= 3
2 ± 1

2
Hence

λ1 =
3
2 + 1

2

λ2 =
3
2 − 1

2

Which simplifies to
λ1 = 2
λ2 = 1

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(2)t + c2e

(1)t

Or
x = c1e2t + c2et

Therefore the homogeneous solution xh is

xh = c1e2t + c2et

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]
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While the set of the basis functions for the homogeneous solution found earlier is

{et, e2t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A1 cos (t) + A2 sin (t) + 3A1 sin (t)− 3A2 cos (t) = sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

3
10 , A2 =

1
10

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
3 cos (t)

10 + sin (t)
10

Therefore the general solution is

x = xh + xp

=
(
c1e2t + c2et

)
+
(
3 cos (t)

10 + sin (t)
10

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e2t + c2et +
3 cos (t)

10 + sin (t)
10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 0 and t = 0
in the above gives

0 = c1 + c2 +
3
10 (1A)
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Taking derivative of the solution gives

x′ = 2c1e2t + c2et −
3 sin (t)

10 + cos (t)
10

substituting x′ = 0 and t = 0 in the above gives

0 = 2c1 + c2 +
1
10 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
5

c2 = −1
2

Substituting these values back in above solution results in

x = e2t
5 − et

2 + 3 cos (t)
10 + sin (t)

10
Summary
The solution(s) found are the following

(1)x = e2t
5 − et

2 + 3 cos (t)
10 + sin (t)

10

(a) Solution plot (b) Slope field plot

Verification of solutions

x = e2t
5 − et

2 + 3 cos (t)
10 + sin (t)

10

Verified OK.
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4.13.3 Solving using Kovacic algorithm

Writing the ode as

x′′ − 3x′ + 2x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −3 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 133: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
−3
1 dt
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= z1e
3t
2

= z1
(
e 3t

2

)
Which simplifies to

x1 = et

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
−−3

1 dt

(x1)2
dt

= x1

∫
e3t

(x1)2
dt

= x1
(
et
)

Therefore the solution is

x = c1x1 + c2x2

= c1
(
et
)
+ c2

(
et
(
et
))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ − 3x′ + 2x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1et + c2e2t

875



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

sin (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{et, e2t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A1 cos (t) + A2 sin (t) + 3A1 sin (t)− 3A2 cos (t) = sin (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

3
10 , A2 =

1
10

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
3 cos (t)

10 + sin (t)
10

Therefore the general solution is

x = xh + xp

=
(
c1et + c2e2t

)
+
(
3 cos (t)

10 + sin (t)
10

)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

x = c1et + c2e2t +
3 cos (t)

10 + sin (t)
10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 0 and t = 0
in the above gives

0 = c1 + c2 +
3
10 (1A)

Taking derivative of the solution gives

x′ = c1et + 2c2e2t −
3 sin (t)

10 + cos (t)
10

substituting x′ = 0 and t = 0 in the above gives

0 = c1 + 2c2 +
1
10 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
2

c2 =
1
5

Substituting these values back in above solution results in

x = e2t
5 − et

2 + 3 cos (t)
10 + sin (t)

10

Summary
The solution(s) found are the following

(1)x = e2t
5 − et

2 + 3 cos (t)
10 + sin (t)

10
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(a) Solution plot (b) Slope field plot

Verification of solutions

x = e2t
5 − et

2 + 3 cos (t)
10 + sin (t)

10

Verified OK.

4.13.4 Maple step by step solution

Let’s solve[
x′′ − 3x′ + 2x = sin (t) , x(0) = 0, x′∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 − 3r + 2 = 0

• Factor the characteristic polynomial
(r − 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (1, 2)

• 1st solution of the homogeneous ODE
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x1(t) = et

• 2nd solution of the homogeneous ODE
x2(t) = e2t

• General solution of the ODE
x = c1x1(t) + c2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = c1et + c2e2t + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = sin (t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 et e2t

et 2 e2t


◦ Compute Wronskian

W (x1(t) , x2(t)) = e3t

◦ Substitute functions into equation for xp(t)
xp(t) = −et

(∫
sin (t) e−tdt

)
+ e2t

(∫
e−2t sin (t) dt

)
◦ Compute integrals

xp(t) = 3 cos(t)
10 + sin(t)

10

• Substitute particular solution into general solution to ODE
x = c1et + c2e2t + 3 cos(t)

10 + sin(t)
10

� Check validity of solution x = c1et + c2e2t + 3 cos(t)
10 + sin(t)

10

◦ Use initial condition x(0) = 0
0 = c1 + c2 + 3

10

◦ Compute derivative of the solution
x′ = c1et + 2c2e2t − 3 sin(t)

10 + cos(t)
10

◦ Use the initial condition x′∣∣∣{t=0}
= 0

0 = c1 + 2c2 + 1
10
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◦ Solve for c1 and c2{
c1 = −1

2 , c2 =
1
5

}
◦ Substitute constant values into general solution and simplify

x = e2t
5 − et

2 + 3 cos(t)
10 + sin(t)

10

• Solution to the IVP
x = e2t

5 − et
2 + 3 cos(t)

10 + sin(t)
10

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 23� �
dsolve([diff(x(t),t$2)-3*diff(x(t),t)+2*x(t)=sin(t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)� �

x(t) = e2t
5 + 3 cos (t)

10 + sin (t)
10 − et

2

3 Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 27� �
DSolve[{x''[t]-3*x'[t]+2*x[t]==Sin[t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) → 1
10
(
et
(
2et − 5

)
+ sin(t) + 3 cos(t)

)

880



4.14 problem 15
4.14.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 881
4.14.2 Solving as second order linear constant coeff ode . . . . . . . . 882
4.14.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 886
4.14.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 891

Internal problem ID [5157]
Internal file name [OUTPUT/4650_Sunday_June_05_2022_03_02_41_PM_86276180/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 3y′ + 2y = 3 sin (x)

With initial conditions [
y(0) = − 9

10 , y
′(0) = − 7

10

]

4.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 3
q(x) = 2

F = 3 sin (x)
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Hence the ode is

y′′ + 3y′ + 2y = 3 sin (x)

The domain of p(x) = 3 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 3 sin (x) is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

4.14.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 3, C = 2, f(x) = 3 sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 3y′ + 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 3, C = 2. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 3λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 3λ+ 2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 3, C = 2 into the above gives

λ1,2 =
−3

(2) (1) ±
1

(2) (1)
√

32 − (4) (1) (2)

= −3
2 ± 1

2

Hence

λ1 = −3
2 + 1

2

λ2 = −3
2 − 1

2

Which simplifies to
λ1 = −1
λ2 = −2

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(−1)x + c2e

(−2)x

Or
y = c1e−x + c2e−2x

Therefore the homogeneous solution yh is

yh = c1e−x + c2e−2x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3 sin (x)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A1 cos (x) + A2 sin (x)− 3A1 sin (x) + 3A2 cos (x) = 3 sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = − 9

10 , A2 =
3
10

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −9 cos (x)
10 + 3 sin (x)

10

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e−2x)+ (−9 cos (x)

10 + 3 sin (x)
10

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2e−2x − 9 cos (x)
10 + 3 sin (x)

10 (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = − 9

10 and
x = 0 in the above gives

− 9
10 = c1 + c2 −

9
10 (1A)

Taking derivative of the solution gives

y′ = −c1e−x − 2c2e−2x + 9 sin (x)
10 + 3 cos (x)

10
substituting y′ = − 7

10 and x = 0 in the above gives

− 7
10 = −c1 − 2c2 +

3
10 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = −1
c2 = 1

Substituting these values back in above solution results in

y = −e−x + e−2x − 9 cos (x)
10 + 3 sin (x)

10
Summary
The solution(s) found are the following

(1)y = −e−x + e−2x − 9 cos (x)
10 + 3 sin (x)

10

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = −e−x + e−2x − 9 cos (x)
10 + 3 sin (x)

10

Verified OK.

4.14.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 3y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 3 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4
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Therefore eq. (4) becomes

z′′(x) = z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 135: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]
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Since r = 1
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
3
1 dx

= z1e
− 3x

2

= z1
(
e− 3x

2

)
Which simplifies to

y1 = e−2x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 3

1 dx

(y1)2
dx

= y1

∫
e−3x

(y1)2
dx

= y1(ex)

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−2x)+ c2

(
e−2x(ex)

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 3y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−2x + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−2x, e−x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

A1 cos (x) + A2 sin (x)− 3A1 sin (x) + 3A2 cos (x) = 3 sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = − 9

10 , A2 =
3
10

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −9 cos (x)
10 + 3 sin (x)

10
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Therefore the general solution is

y = yh + yp

=
(
c1e−2x + c2e−x

)
+
(
−9 cos (x)

10 + 3 sin (x)
10

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−2x + c2e−x − 9 cos (x)
10 + 3 sin (x)

10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = − 9

10 and
x = 0 in the above gives

− 9
10 = c1 + c2 −

9
10 (1A)

Taking derivative of the solution gives

y′ = −2c1e−2x − c2e−x + 9 sin (x)
10 + 3 cos (x)

10

substituting y′ = − 7
10 and x = 0 in the above gives

− 7
10 = −2c1 − c2 +

3
10 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = −1

Substituting these values back in above solution results in

y = −e−x + e−2x − 9 cos (x)
10 + 3 sin (x)

10

Summary
The solution(s) found are the following

(1)y = −e−x + e−2x − 9 cos (x)
10 + 3 sin (x)

10
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = −e−x + e−2x − 9 cos (x)
10 + 3 sin (x)

10

Verified OK.

4.14.4 Maple step by step solution

Let’s solve[
y′′ + 3y′ + 2y = 3 sin (x) , y(0) = − 9

10 , y
′∣∣∣{x=0}

= − 7
10

]
• Highest derivative means the order of the ODE is 2

y′′

• Characteristic polynomial of homogeneous ODE
r2 + 3r + 2 = 0

• Factor the characteristic polynomial
(r + 2) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−2,−1)

• 1st solution of the homogeneous ODE
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y1(x) = e−2x

• 2nd solution of the homogeneous ODE
y2(x) = e−x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−2x + c2e−x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 3 sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−2x e−x

−2 e−2x −e−x


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−3x

◦ Substitute functions into equation for yp(x)
yp(x) = −3 e−2x(∫ sin (x) e2xdx

)
+ 3 e−x

(∫
sin (x) exdx

)
◦ Compute integrals

yp(x) = −9 cos(x)
10 + 3 sin(x)

10

• Substitute particular solution into general solution to ODE
y = c1e−2x + c2e−x − 9 cos(x)

10 + 3 sin(x)
10

� Check validity of solution y = c1e−2x + c2e−x − 9 cos(x)
10 + 3 sin(x)

10

◦ Use initial condition y(0) = − 9
10

− 9
10 = c1 + c2 − 9

10

◦ Compute derivative of the solution
y′ = −2c1e−2x − c2e−x + 9 sin(x)

10 + 3 cos(x)
10

◦ Use the initial condition y′
∣∣∣{x=0}

= − 7
10

− 7
10 = −2c1 − c2 + 3

10
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◦ Solve for c1 and c2

{c1 = 1, c2 = −1}
◦ Substitute constant values into general solution and simplify

y = −e−x + e−2x − 9 cos(x)
10 + 3 sin(x)

10

• Solution to the IVP
y = −e−x + e−2x − 9 cos(x)

10 + 3 sin(x)
10

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$2)+3*diff(y(x),x)+2*y(x)=3*sin(x),y(0) = -9/10, D(y)(0) = -7/10],y(x), singsol=all)� �

y(x) = e−2x − 9 cos (x)
10 + 3 sin (x)

10 − e−x

3 Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 30� �
DSolve[{y''[x]+3*y'[x]+2*y[x]==3*Sin[x],{y[0]==-9/10,y'[0]==-7/10}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −e−2x(ex − 1) + 3 sin(x)
10 − 9 cos(x)

10
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4.15 problem 16
4.15.1 Solving as second order linear constant coeff ode . . . . . . . . 894
4.15.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 897
4.15.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 902

Internal problem ID [5158]
Internal file name [OUTPUT/4651_Sunday_June_05_2022_03_02_43_PM_99856319/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + 6y′ + 10y = 50x

4.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 6, C = 10, f(x) = 50x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 6y′ + 10y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 6, C = 10. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + 6λ eλx + 10 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 6λ+ 10 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 6, C = 10 into the above gives

λ1,2 =
−6

(2) (1) ±
1

(2) (1)
√

62 − (4) (1) (10)

= −3± i

Hence

λ1 = −3 + i

λ2 = −3− i

Which simplifies to
λ1 = −3 + i

λ2 = −3− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −3 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e−3x(cos (x) c1 + c2 sin (x))

Therefore the homogeneous solution yh is

yh = e−3x(cos (x) c1 + c2 sin (x))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) e−3x, sin (x) e−3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

10A2x+ 10A1 + 6A2 = 50x

Solving for the unknowns by comparing coefficients results in

[A1 = −3, A2 = 5]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 5x− 3

Therefore the general solution is

y = yh + yp

=
(
e−3x(cos (x) c1 + c2 sin (x))

)
+ (5x− 3)

Summary
The solution(s) found are the following

(1)y = e−3x(cos (x) c1 + c2 sin (x)) + 5x− 3
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Figure 188: Slope field plot

Verification of solutions

y = e−3x(cos (x) c1 + c2 sin (x)) + 5x− 3

Verified OK.

4.15.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 6y′ + 10y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 6 (3)
C = 10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

897



Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 137: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6
1 dx

= z1e
−3x

= z1
(
e−3x)

Which simplifies to
y1 = cos (x) e−3x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6

1 dx

(y1)2
dx

= y1

∫
e−6x

(y1)2
dx

= y1(tan (x))
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
cos (x) e−3x)+ c2

(
cos (x) e−3x(tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 6y′ + 10y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e−3x cos (x) c1 + e−3x sin (x) c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) e−3x, sin (x) e−3x}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A2x+ A1

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

10A2x+ 10A1 + 6A2 = 50x
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Solving for the unknowns by comparing coefficients results in

[A1 = −3, A2 = 5]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 5x− 3

Therefore the general solution is

y = yh + yp

=
(
e−3x cos (x) c1 + e−3x sin (x) c2

)
+ (5x− 3)

Which simplifies to

y = e−3x(cos (x) c1 + c2 sin (x)) + 5x− 3

Summary
The solution(s) found are the following

(1)y = e−3x(cos (x) c1 + c2 sin (x)) + 5x− 3

Figure 189: Slope field plot
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Verification of solutions

y = e−3x(cos (x) c1 + c2 sin (x)) + 5x− 3

Verified OK.

4.15.3 Maple step by step solution

Let’s solve
y′′ + 6y′ + 10y = 50x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 6r + 10 = 0

• Use quadratic formula to solve for r

r = (−6)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−3− I,−3 + I)

• 1st solution of the homogeneous ODE
y1(x) = cos (x) e−3x

• 2nd solution of the homogeneous ODE
y2(x) = sin (x) e−3x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = e−3x cos (x) c1 + e−3x sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 50x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (x) e−3x sin (x) e−3x

− sin (x) e−3x − 3 cos (x) e−3x cos (x) e−3x − 3 sin (x) e−3x



902



◦ Compute Wronskian
W (y1(x) , y2(x)) = e−6x

◦ Substitute functions into equation for yp(x)
yp(x) = −50 e−3x(cos (x) (∫ sin (x)x e3xdx

)
− sin (x)

(∫
cos (x)x e3xdx

))
◦ Compute integrals

yp(x) = 5x− 3
• Substitute particular solution into general solution to ODE

y = e−3x cos (x) c1 + e−3x sin (x) c2 + 5x− 3

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$2)+6*diff(y(x),x)+10*y(x)=50*x,y(x), singsol=all)� �

y(x) = e−3x sin (x) c2 + e−3x cos (x) c1 + 5x− 3

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 30� �
DSolve[y''[x]+6*y'[x]+10*y[x]==50*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 5x+ c2e
−3x cos(x) + c1e

−3x sin(x)− 3
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4.16 problem 17
4.16.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 904
4.16.2 Solving as second order linear constant coeff ode . . . . . . . . 905
4.16.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 909
4.16.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 914

Internal problem ID [5159]
Internal file name [OUTPUT/4652_Sunday_June_05_2022_03_02_44_PM_73858023/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x′′ + 2x′ + 2x = 85 sin (3t)

With initial conditions

[x(0) = 0, x′(0) = −20]

4.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 2
q(t) = 2
F = 85 sin (3t)
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Hence the ode is

x′′ + 2x′ + 2x = 85 sin (3t)

The domain of p(t) = 2 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 2 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = 85 sin (3t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

4.16.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 2, C = 2, f(t) = 85 sin (3t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 2x′ + 2x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 2, C = 2. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2eλt + 2λ eλt + 2 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 2λ+ 2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 2 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)
√

22 − (4) (1) (2)

= −1± i

Hence

λ1 = −1 + i

λ2 = −1− i

Which simplifies to
λ1 = −1 + i

λ2 = −1− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes
x = e−t(c1 cos (t) + c2 sin (t))

Therefore the homogeneous solution xh is

xh = e−t(c1 cos (t) + c2 sin (t))

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

85 sin (3t)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (3t) , sin (3t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (t) e−t, sin (t) e−t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (3t) + A2 sin (3t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−7A1 cos (3t)− 7A2 sin (3t)− 6A1 sin (3t) + 6A2 cos (3t) = 85 sin (3t)

Solving for the unknowns by comparing coefficients results in

[A1 = −6, A2 = −7]

Substituting the above back in the above trial solution xp, gives the particular solution

xp = −6 cos (3t)− 7 sin (3t)

Therefore the general solution is

x = xh + xp

=
(
e−t(c1 cos (t) + c2 sin (t))

)
+ (−6 cos (3t)− 7 sin (3t))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = e−t(c1 cos (t) + c2 sin (t))− 6 cos (3t)− 7 sin (3t) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 0 and t = 0
in the above gives

0 = c1 − 6 (1A)
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Taking derivative of the solution gives

x′ = −e−t(c1 cos (t) + c2 sin (t)) + e−t(−c1 sin (t) + c2 cos (t)) + 18 sin (3t)− 21 cos (3t)

substituting x′ = −20 and t = 0 in the above gives

−20 = −c1 + c2 − 21 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 6
c2 = 7

Substituting these values back in above solution results in

x = 6 cos (t) e−t + 7 sin (t) e−t − 7 sin (3t)− 6 cos (3t)

Which simplifies to

x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)

Summary
The solution(s) found are the following

(1)x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)

(a) Solution plot (b) Slope field plot

Verification of solutions

x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)

Verified OK.
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4.16.3 Solving using Kovacic algorithm

Writing the ode as

x′′ + 2x′ + 2x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(t) = −z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 139: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos (t)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2
1 dt

910



= z1e
−t

= z1
(
e−t
)

Which simplifies to
x1 = cos (t) e−t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 2

1 dt

(x1)2
dt

= x1

∫
e−2t

(x1)2
dt

= x1(tan (t))

Therefore the solution is

x = c1x1 + c2x2

= c1
(
cos (t) e−t

)
+ c2

(
cos (t) e−t(tan (t))

)
This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 2x′ + 2x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1 cos (t) e−t + e−t sin (t) c2
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

85 sin (3t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (3t) , sin (3t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (t) e−t, sin (t) e−t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (3t) + A2 sin (3t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−7A1 cos (3t)− 7A2 sin (3t)− 6A1 sin (3t) + 6A2 cos (3t) = 85 sin (3t)

Solving for the unknowns by comparing coefficients results in

[A1 = −6, A2 = −7]

Substituting the above back in the above trial solution xp, gives the particular solution

xp = −6 cos (3t)− 7 sin (3t)

Therefore the general solution is

x = xh + xp

=
(
c1 cos (t) e−t + e−t sin (t) c2

)
+ (−6 cos (3t)− 7 sin (3t))

Which simplifies to

x = e−t(c1 cos (t) + c2 sin (t))− 6 cos (3t)− 7 sin (3t)
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Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = e−t(c1 cos (t) + c2 sin (t))− 6 cos (3t)− 7 sin (3t) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 0 and t = 0
in the above gives

0 = c1 − 6 (1A)

Taking derivative of the solution gives

x′ = −e−t(c1 cos (t) + c2 sin (t)) + e−t(−c1 sin (t) + c2 cos (t)) + 18 sin (3t)− 21 cos (3t)

substituting x′ = −20 and t = 0 in the above gives

−20 = −c1 + c2 − 21 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 6
c2 = 7

Substituting these values back in above solution results in

x = 6 cos (t) e−t + 7 sin (t) e−t − 7 sin (3t)− 6 cos (3t)

Which simplifies to

x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)

Summary
The solution(s) found are the following

(1)x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)
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(a) Solution plot (b) Slope field plot

Verification of solutions

x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)

Verified OK.

4.16.4 Maple step by step solution

Let’s solve[
x′′ + 2x′ + 2x = 85 sin (3t) , x(0) = 0, x′∣∣∣{t=0}

= −20
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + 2r + 2 = 0

• Use quadratic formula to solve for r

r = (−2)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−1− I,−1 + I)

• 1st solution of the homogeneous ODE
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x1(t) = cos (t) e−t

• 2nd solution of the homogeneous ODE
x2(t) = sin (t) e−t

• General solution of the ODE
x = c1x1(t) + c2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = c1 cos (t) e−t + e−t sin (t) c2 + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = 85 sin (3t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 cos (t) e−t sin (t) e−t

− sin (t) e−t − cos (t) e−t cos (t) e−t − sin (t) e−t


◦ Compute Wronskian

W (x1(t) , x2(t)) = e−2t

◦ Substitute functions into equation for xp(t)
xp(t) = −85 e−t

(
cos (t)

(∫
sin (t) sin (3t) etdt

)
− sin (t)

(∫
cos (t) sin (3t) etdt

))
◦ Compute integrals

xp(t) = −6 cos (3t)− 7 sin (3t)
• Substitute particular solution into general solution to ODE

x = c1 cos (t) e−t + e−t sin (t) c2 − 6 cos (3t)− 7 sin (3t)
� Check validity of solution x = c1 cos (t) e−t + e−t sin (t) c2 − 6 cos (3t)− 7 sin (3t)

◦ Use initial condition x(0) = 0
0 = c1 − 6

◦ Compute derivative of the solution
x′ = −c1 sin (t) e−t − c1 cos (t) e−t − e−t sin (t) c2 + e−t cos (t) c2 + 18 sin (3t)− 21 cos (3t)

◦ Use the initial condition x′∣∣∣{t=0}
= −20

−20 = −c1 + c2 − 21
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◦ Solve for c1 and c2

{c1 = 6, c2 = 7}
◦ Substitute constant values into general solution and simplify

x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)
• Solution to the IVP

x = (6 cos (t) + 7 sin (t)) e−t − 6 cos (3t)− 7 sin (3t)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 33� �
dsolve([diff(x(t),t$2)+2*diff(x(t),t)+2*x(t)=85*sin(3*t),x(0) = 0, D(x)(0) = -20],x(t), singsol=all)� �

x(t) = (7 sin (t) + 6 cos (t)) e−t − 6 cos (3t)− 7 sin (3t)

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 36� �
DSolve[{x''[t]+2*x'[t]+2*x[t]==85*Sin[3*t],{x[0]==0,x'[0]==-20}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) → 7e−t sin(t)− 7 sin(3t) + 6e−t cos(t)− 6 cos(3t)
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Internal problem ID [5160]
Internal file name [OUTPUT/4653_Sunday_June_05_2022_03_02_45_PM_56079746/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y = 3 sin (x)

With initial conditions [
y(0) = 0, y′

(π
2

)
= 1
]

4.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 4, f(x) = 3 sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = 4. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (2x) + c2 sin (2x))
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Or
y = c1 cos (2x) + c2 sin (2x)

Therefore the homogeneous solution yh is

yh = c1 cos (2x) + c2 sin (2x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (2x) , sin (2x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A1 cos (x) + 3A2 sin (x) = 3 sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = sin (x)

Therefore the general solution is

y = yh + yp

= (c1 cos (2x) + c2 sin (2x)) + (sin (x))
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Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (2x) + c2 sin (2x) + sin (x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = c1 (1A)

Taking derivative of the solution gives

y′ = −2 sin (2x) c1 + 2c2 cos (2x) + cos (x)

substituting y′ = 1 and x = π
2 in the above gives

1 = −2c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0

c2 = −1
2

Substituting these values back in above solution results in

y = −sin (2x)
2 + sin (x)

Summary
The solution(s) found are the following

(1)y = −sin (2x)
2 + sin (x)
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Figure 192: Solution plot

Verification of solutions

y = −sin (2x)
2 + sin (x)

Verified OK.

4.17.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 141: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to
y1 = z1

= cos (2x)

Which simplifies to
y1 = cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (2x)
∫ 1

cos (2x)2
dx

= cos (2x)
(
tan (2x)

2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(cos (2x)) + c2

(
cos (2x)

(
tan (2x)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (2x) +
c2 sin (2x)

2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3 sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is{
sin (2x)

2 , cos (2x)
}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)
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The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

3A1 cos (x) + 3A2 sin (x) = 3 sin (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = sin (x)

Therefore the general solution is

y = yh + yp

=
(
c1 cos (2x) +

c2 sin (2x)
2

)
+ (sin (x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (2x) +
c2 sin (2x)

2 + sin (x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 0 and x = 0
in the above gives

0 = c1 (1A)

Taking derivative of the solution gives

y′ = −2 sin (2x) c1 + c2 cos (2x) + cos (x)

substituting y′ = 1 and x = π
2 in the above gives

1 = −c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0
c2 = −1
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Substituting these values back in above solution results in

y = −sin (2x)
2 + sin (x)

Summary
The solution(s) found are the following

(1)y = −sin (2x)
2 + sin (x)

Figure 193: Solution plot

Verification of solutions

y = −sin (2x)
2 + sin (x)

Verified OK.

4.17.3 Maple step by step solution

Let’s solve[
y′′ + 4y = 3 sin (x) , y(0) = 0, y′

∣∣∣{
x=π

2
} = 1

]
• Highest derivative means the order of the ODE is 2
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y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
r = (−2 I, 2 I)

• 1st solution of the homogeneous ODE
y1(x) = cos (2x)

• 2nd solution of the homogeneous ODE
y2(x) = sin (2x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1 cos (2x) + c2 sin (2x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 3 sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = −3 cos (2x)
(∫

cos (x) sin (x)2 dx
)
+ 3 sin(2x)

(∫
(sin(3x)−sin(x))dx

)
4

◦ Compute integrals
yp(x) = sin (x)

• Substitute particular solution into general solution to ODE
y = c1 cos (2x) + c2 sin (2x) + sin (x)
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� Check validity of solution y = c1 cos (2x) + c2 sin (2x) + sin (x)
◦ Use initial condition y(0) = 0

0 = c1

◦ Compute derivative of the solution
y′ = −2 sin (2x) c1 + 2c2 cos (2x) + cos (x)

◦ Use the initial condition y′
∣∣∣{

x=π
2
} = 1

1 = −2c2
◦ Solve for c1 and c2{

c1 = 0, c2 = −1
2

}
◦ Substitute constant values into general solution and simplify

y = − sin(2x)
2 + sin (x)

• Solution to the IVP
y = − sin(2x)

2 + sin (x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve([diff(y(x),x$2)=3*sin(x)-4*y(x),y(0) = 0, D(y)(1/2*Pi) = 1],y(x), singsol=all)� �

y(x) = −sin (2x)
2 + sin (x)
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3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 13� �
DSolve[{y''[x]==3*Sin[x]-4*y[x],{y[0]==0,y'[Pi/2]==1}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −(sin(x)(cos(x)− 1))
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4.18 problem 19
4.18.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 930
4.18.2 Solving as second order linear constant coeff ode . . . . . . . . 931
4.18.3 Solving as second order ode can be made integrable ode . . . . 934
4.18.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 936
4.18.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 940

Internal problem ID [5161]
Internal file name [OUTPUT/4654_Sunday_June_05_2022_03_02_46_PM_9555196/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

x′′

2 + 48x = 0

With initial conditions [
x(0) = 1

6 , x
′(0) = 0

]
4.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 0
q(t) = 96
F = 0
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Hence the ode is

x′′ + 96x = 0

The domain of p(t) = 0 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 96 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

4.18.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1
2 , B = 0, C = 48. Let the solution be x = eλt. Substituting

this into the ODE gives
λ2eλt
2 + 48 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2

2 + 48 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1
2 , B = 0, C = 48 into the above gives

λ1,2 =
0

(2)
(1
2

) ± 1
(2)
(1
2

)√02 − (4)
(
1
2

)
(48)

= ±4i
√
6

Hence

λ1 = +4i
√
6

λ2 = −4i
√
6
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Which simplifies to

λ1 = 4i
√
6

λ2 = −4i
√
6

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 4
√
6. Therefore the final solution, when using Euler relation, can

be written as
x = eαt(c1 cos(βt) + c2 sin(βt))

Which becomes

x = e0
(
c1 cos

(
4t
√
6
)
+ c2 sin

(
4t
√
6
))

Or

x = c1 cos
(
4t
√
6
)
+ c2 sin

(
4t
√
6
)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1 cos
(
4t
√
6
)
+ c2 sin

(
4t
√
6
)

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

6 and t = 0
in the above gives

1
6 = c1 (1A)

Taking derivative of the solution gives

x′ = −4c1
√
6 sin

(
4t
√
6
)
+ 4c2

√
6 cos

(
4t
√
6
)

substituting x′ = 0 and t = 0 in the above gives

0 = 4c2
√
6 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
6

c2 = 0

Substituting these values back in above solution results in

x =
cos
(
4t
√
6
)

6

Summary
The solution(s) found are the following

(1)x =
cos
(
4t
√
6
)

6

(a) Solution plot (b) Slope field plot

Verification of solutions

x =
cos
(
4t
√
6
)

6

Verified OK.
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4.18.3 Solving as second order ode can be made integrable ode

Multiplying the ode by x′ gives

x′x′′

2 + 48x′x = 0

Integrating the above w.r.t t gives∫ (
x′x′′

2 + 48x′x

)
dt = 0

x′2

4 + 24x2 = c2

Which is now solved for x. Solving the given ode for x′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

x′ = 2
√
−24x2 + c1 (1)

x′ = −2
√

−24x2 + c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1
2
√
−24x2 + c1

dx =
∫

dt

√
6 arctan

(
2
√
6x√

−24x2+c1

)
24 = t+ c2

Solving equation (2)

Integrating both sides gives ∫
− 1
2
√
−24x2 + c1

dx =
∫

dt

−

√
6 arctan

(
2
√
6x√

−24x2+c1

)
24 = t+ c3

Initial conditions are used to solve for the constants of integration.
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Looking at the First solution
√
6 arctan

(
2
√
6x√

−24x2+c1

)
24 = t+ c2 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

6 and t = 0
in the above gives

arctan
( √

2√
−2+3c1

)√
6

24 = c2 (1A)

Taking derivative of the solution gives

x′ = 2
(
tan

(
4(t+ c2)

√
6
)2

+ 1
)√

c1

tan
(
4 (t+ c2)

√
6
)2 + 1

−
2 tan

(
4(t+ c2)

√
6
)2

c1√
c1

tan
(
4(t+c2)

√
6
)2

+1

(
tan

(
4 (t+ c2)

√
6
)2 + 1

)
substituting x′ = 0 and t = 0 in the above gives

0 =
2 cos

(
4c2

√
6
)2

c1√
c1 cos

(
4c2

√
6
)2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. There is no solution for the constants
of integrations. This solution is removed.

Looking at the Second solution

−

√
6 arctan

(
2
√
6x√

−24x2+c1

)
24 = t+ c3 (2)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

6 and t = 0
in the above gives

−
arctan

( √
2√

−2+3c1

)√
6

24 = c3 (1A)

Taking derivative of the solution gives

x′ = −2
(
tan

(
4(t+ c3)

√
6
)2

+ 1
)√

c1

tan
(
4 (t+ c3)

√
6
)2 + 1

+
2 tan

(
4(t+ c3)

√
6
)2

c1√
c1

tan
(
4(t+c3)

√
6
)2

+1

(
tan

(
4 (t+ c3)

√
6
)2 + 1

)
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substituting x′ = 0 and t = 0 in the above gives

0 = −
2 cos

(
4c3

√
6
)2

c1√
c1 cos

(
4c3

√
6
)2 (2A)

Equations {1A,2A} are now solved for {c1, c3}. There is no solution for the constants
of integrations. This solution is removed.

Verification of solutions N/A

4.18.4 Solving using Kovacic algorithm

Writing the ode as

x′′

2 + 48x = 0 (1)

Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
2

B = 0 (3)
C = 48

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −96
1 (6)
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Comparing the above to (5) shows that

s = −96
t = 1

Therefore eq. (4) becomes

z′′(t) = −96z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 143: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

937



Since r = −96 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = cos
(
4t
√
6
)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to

x1 = z1

= cos
(
4t
√
6
)

Which simplifies to

x1 = cos
(
4t
√
6
)

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= cos
(
4t
√
6
)∫ 1

cos
(
4t
√
6
)2 dt

= cos
(
4t
√
6
)(√

6 tan
(
4t
√
6
)

24

)

Therefore the solution is

x = c1x1 + c2x2

= c1
(
cos
(
4t
√
6
))

+ c2

(
cos
(
4t
√
6
)(√

6 tan
(
4t
√
6
)

24

))
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Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1 cos
(
4t
√
6
)
+

c2
√
6 sin

(
4t
√
6
)

24 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

6 and t = 0
in the above gives

1
6 = c1 (1A)

Taking derivative of the solution gives

x′ = −4c1
√
6 sin

(
4t
√
6
)
+ c2 cos

(
4t
√
6
)

substituting x′ = 0 and t = 0 in the above gives

0 = c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
6

c2 = 0

Substituting these values back in above solution results in

x =
cos
(
4t
√
6
)

6

Summary
The solution(s) found are the following

(1)x =
cos
(
4t
√
6
)

6
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(a) Solution plot (b) Slope field plot

Verification of solutions

x =
cos
(
4t
√
6
)

6

Verified OK.

4.18.5 Maple step by step solution

Let’s solve[
x′′

2 + 48x = 0, x(0) = 1
6 , x

′∣∣∣{t=0}
= 0
]

• Highest derivative means the order of the ODE is 2
x′′

• Isolate 2nd derivative
x′′ = −96x

• Group terms with x on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
x′′ + 96x = 0

• Characteristic polynomial of ODE
r2 + 96 = 0

• Use quadratic formula to solve for r
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r = 0±
(√

−384
)

2

• Roots of the characteristic polynomial
r =

(
−4 I

√
6, 4 I

√
6
)

• 1st solution of the ODE
x1(t) = cos

(
4t
√
6
)

• 2nd solution of the ODE
x2(t) = sin

(
4t
√
6
)

• General solution of the ODE
x = c1x1(t) + c2x2(t)

• Substitute in solutions
x = c1 cos

(
4t
√
6
)
+ c2 sin

(
4t
√
6
)

� Check validity of solution x = c1 cos
(
4t
√
6
)
+ c2 sin

(
4t
√
6
)

◦ Use initial condition x(0) = 1
6

1
6 = c1

◦ Compute derivative of the solution
x′ = −4c1

√
6 sin

(
4t
√
6
)
+ 4c2

√
6 cos

(
4t
√
6
)

◦ Use the initial condition x′∣∣∣{t=0}
= 0

0 = 4c2
√
6

◦ Solve for c1 and c2{
c1 = 1

6 , c2 = 0
}

◦ Substitute constant values into general solution and simplify

x =
cos
(
4t
√
6
)

6

• Solution to the IVP

x =
cos
(
4t
√
6
)

6

941



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 13� �
dsolve([1/2*diff(x(t),t$2)=-48*x(t),x(0) = 1/6, D(x)(0) = 0],x(t), singsol=all)� �

x(t) =
cos
(
4
√
6 t
)

6

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18� �
DSolve[{1/2*x''[t]==-48*x[t],{x[0]==1/6,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) → 1
6 cos

(
4
√
6t
)
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4.19 problem 20
4.19.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 943
4.19.2 Solving as second order linear constant coeff ode . . . . . . . . 944
4.19.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 948
4.19.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 953

Internal problem ID [5162]
Internal file name [OUTPUT/4655_Sunday_June_05_2022_03_02_47_PM_83572764/index.tex]

Book: Engineering Mathematics. By K. A. Stroud. 5th edition. Industrial press Inc. NY.
2001
Section: Program 25. Second order differential equations. Further problems 25. page 1094
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x′′ + 5x′ + 6x = cos (t)

With initial conditions [
x(0) = 1

10 , x
′(0) = 0

]

4.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 5
q(t) = 6
F = cos (t)
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Hence the ode is

x′′ + 5x′ + 6x = cos (t)

The domain of p(t) = 5 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 6 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. The domain of F = cos (t) is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

4.19.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 5, C = 6, f(t) = cos (t). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 5x′ + 6x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 5, C = 6. Let the solution be x = eλt. Substituting this
into the ODE gives

λ2eλt + 5λ eλt + 6 eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 5λ+ 6 = 0 (2)

944



Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 5, C = 6 into the above gives

λ1,2 =
−5

(2) (1) ±
1

(2) (1)
√

52 − (4) (1) (6)

= −5
2 ± 1

2
Hence

λ1 = −5
2 + 1

2

λ2 = −5
2 − 1

2

Which simplifies to
λ1 = −2
λ2 = −3

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e
(−2)t + c2e

(−3)t

Or
x = c1e−2t + c2e−3t

Therefore the homogeneous solution xh is

xh = c1e−2t + c2e−3t

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]
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While the set of the basis functions for the homogeneous solution found earlier is

{e−3t, e−2t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

5A1 cos (t) + 5A2 sin (t)− 5A1 sin (t) + 5A2 cos (t) = cos (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
10 , A2 =

1
10

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
cos (t)
10 + sin (t)

10

Therefore the general solution is

x = xh + xp

=
(
c1e−2t + c2e−3t)+ (cos (t)

10 + sin (t)
10

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e−2t + c2e−3t + cos (t)
10 + sin (t)

10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

10 and t = 0
in the above gives

1
10 = c1 + c2 +

1
10 (1A)
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Taking derivative of the solution gives

x′ = −2c1e−2t − 3c2e−3t − sin (t)
10 + cos (t)

10
substituting x′ = 0 and t = 0 in the above gives

0 = −2c1 − 3c2 +
1
10 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = − 1
10

c2 =
1
10

Substituting these values back in above solution results in

x = −e−2t

10 + e−3t

10 + cos (t)
10 + sin (t)

10
Summary
The solution(s) found are the following

(1)x = −e−2t

10 + e−3t

10 + cos (t)
10 + sin (t)

10

(a) Solution plot (b) Slope field plot

Verification of solutions

x = −e−2t

10 + e−3t

10 + cos (t)
10 + sin (t)

10

Verified OK.
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4.19.3 Solving using Kovacic algorithm

Writing the ode as

x′′ + 5x′ + 6x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 5 (3)
C = 6

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
4 (6)

Comparing the above to (5) shows that

s = 1
t = 4

Therefore eq. (4) becomes

z′′(t) = z(t)
4 (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 145: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1
4 is not a function of t, then there is no need run Kovacic algorithm to obtain

a solution for transformed ode z′′ = rz as one solution is

z1(t) = e− t
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
5
1 dt
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= z1e
− 5t

2

= z1
(
e− 5t

2

)
Which simplifies to

x1 = e−3t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 5

1 dt

(x1)2
dt

= x1

∫
e−5t

(x1)2
dt

= x1
(
et
)

Therefore the solution is

x = c1x1 + c2x2

= c1
(
e−3t)+ c2

(
e−3t(et))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 5x′ + 6x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1e−3t + c2e−2t
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

cos (t)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (t) , sin (t)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−3t, e−2t}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (t) + A2 sin (t)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

5A1 cos (t) + 5A2 sin (t)− 5A1 sin (t) + 5A2 cos (t) = cos (t)

Solving for the unknowns by comparing coefficients results in[
A1 =

1
10 , A2 =

1
10

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp =
cos (t)
10 + sin (t)

10

Therefore the general solution is

x = xh + xp

=
(
c1e−3t + c2e−2t)+ (cos (t)

10 + sin (t)
10

)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

x = c1e−3t + c2e−2t + cos (t)
10 + sin (t)

10 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1

10 and t = 0
in the above gives

1
10 = c1 + c2 +

1
10 (1A)

Taking derivative of the solution gives

x′ = −3c1e−3t − 2c2e−2t − sin (t)
10 + cos (t)

10

substituting x′ = 0 and t = 0 in the above gives

0 = −3c1 − 2c2 +
1
10 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
10

c2 = − 1
10

Substituting these values back in above solution results in

x = −e−2t

10 + e−3t

10 + cos (t)
10 + sin (t)

10

Summary
The solution(s) found are the following

(1)x = −e−2t

10 + e−3t

10 + cos (t)
10 + sin (t)

10
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(a) Solution plot (b) Slope field plot

Verification of solutions

x = −e−2t

10 + e−3t

10 + cos (t)
10 + sin (t)

10

Verified OK.

4.19.4 Maple step by step solution

Let’s solve[
x′′ + 5x′ + 6x = cos (t) , x(0) = 1

10 , x
′∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
r2 + 5r + 6 = 0

• Factor the characteristic polynomial
(r + 3) (r + 2) = 0

• Roots of the characteristic polynomial
r = (−3,−2)

• 1st solution of the homogeneous ODE
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x1(t) = e−3t

• 2nd solution of the homogeneous ODE
x2(t) = e−2t

• General solution of the ODE
x = c1x1(t) + c2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE
x = c1e−3t + c2e−2t + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = cos (t)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 e−3t e−2t

−3 e−3t −2 e−2t


◦ Compute Wronskian

W (x1(t) , x2(t)) = e−5t

◦ Substitute functions into equation for xp(t)
xp(t) = −e−3t(∫ cos (t) e3tdt

)
+ e−2t(∫ e2t cos (t) dt

)
◦ Compute integrals

xp(t) = cos(t)
10 + sin(t)

10

• Substitute particular solution into general solution to ODE
x = c1e−3t + c2e−2t + cos(t)

10 + sin(t)
10

� Check validity of solution x = c1e−3t + c2e−2t + cos(t)
10 + sin(t)

10

◦ Use initial condition x(0) = 1
10

1
10 = c1 + c2 + 1

10

◦ Compute derivative of the solution
x′ = −3c1e−3t − 2c2e−2t − sin(t)

10 + cos(t)
10

◦ Use the initial condition x′∣∣∣{t=0}
= 0

0 = −3c1 − 2c2 + 1
10
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◦ Solve for c1 and c2{
c1 = 1

10 , c2 = − 1
10

}
◦ Substitute constant values into general solution and simplify

x = − e−2t

10 + e−3t

10 + cos(t)
10 + sin(t)

10

• Solution to the IVP
x = − e−2t

10 + e−3t

10 + cos(t)
10 + sin(t)

10

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 25� �
dsolve([diff(x(t),t$2)+5*diff(x(t),t)+6*x(t)=cos(t),x(0) = 1/10, D(x)(0) = 0],x(t), singsol=all)� �

x(t) = e−3t

10 − e−2t

10 + cos (t)
10 + sin (t)

10

3 Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 26� �
DSolve[{x''[t]+5*x'[t]+6*x[t]==Cos[t],{x[0]==1/10,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) → 1
10
(
e−3t − e−2t + sin(t) + cos(t)

)
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